• 1
    Marsh M, Bolzau E & Helenius A (1983) Penetration of semliki forest virus from acidic prelysosomal vacuoles. Cell 32, 931940.
  • 2
    Goldstein JL, Anderson RG & Brown MS (1979) Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 279, 679685.
  • 3
    Pastan IH & Willingham MC (1981) Journey to the center of the cell: role of the receptosome. Science 214, 504509.
  • 4
    Huotari J & Helenius A (2011) Endosome maturation. EMBO J 30, 34813500.
  • 5
    Brodsky FM (2012) Diversity of clathrin function: new tricks for an old protein. Annu Rev Cell Dev Biol 28, 309336.
  • 6
    Lim JP & Gleeson PA (2011) Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol 89, 836843.
  • 7
    Tooze J & Hollinshead M (1991) Tubular early endosomal networks in AtT20 and other cells. J Cell Biol 115, 635653.
  • 8
    Stoorvogel W, Oorschot V & Geuze HJ (1996) A novel class of clathrin-coated vesicles budding from endosomes. J Cell Biol 132, 2133.
  • 9
    Pfeffer SR (2009) Multiple routes of protein transport from endosomes to the trans Golgi network. FEBS Lett 583, 38113816.
  • 10
    Bonifacino JS & Hurley JH (2008) Retromer. Curr Opin Cell Biol 20, 427436.
  • 11
    Poteryaev D, Datta S, Ackema K, Zerial M & Spang A (2010) Identification of the switch in early-to-late endosome transition. Cell 141, 497508.
  • 12
    Kinchen JM & Ravichandran KS (2010) Identification of two evolutionarily conserved genes regulating processing of engulfed apoptotic cells. Nature 464, 778782.
  • 13
    Nickerson DP, Russell MRG & Odorizzi G (2007) A concentric circle model of multivesicular body cargo sorting. EMBO Rep 8, 644650.
  • 14
    Lee S-K, Li W, Ryu S-E, Rhim T & Ahnn J (2010) Vacuolar H+-ATPases in Caenorhabditis elegans: what can we learn about giant H+ pumps from tiny worms? Biochim Biophys Acta 1797, 16871695.
  • 15
    Robinson FL & Dixon JE (2006) Myotubularin phosphatases: policing 3-phosphoinositides. Trends Cell Biol 16, 403412.
  • 16
    Dove SK, Dong K, Kobayashi T, Williams FK & Michell RH (2009) Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function. Biochem J 419, 113.
  • 17
    Nickerson DP, Brett CL & Merz AJ (2009) Vps-C complexes: gatekeepers of endolysosomal traffic. Curr Opin Cell Biol 21, 543551.
  • 18
    Zwilling D, Cypionka A, Pohl WH, Fasshauer D, Walla PJ, Wahl MC & Jahn R (2007) Early endosomal SNAREs form a structurally conserved SNARE complex and fuse liposomes with multiple topologies. EMBO J 26, 918.
  • 19
    Brandhorst D, Zwilling D, Rizzoli SO, Lippert U, Lang T & Jahn R (2006) Homotypic fusion of early endosomes: SNAREs do not determine fusion specificity. Proc Natl Acad Sci USA 103, 27012706.
  • 20
    Wickner W (2010) Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu Rev Cell Dev Biol 26, 115136.
  • 21
    Pryor PRP & Luzio JPJ (2009) Delivery of endocytosed membrane proteins to the lysosome. Biochim Biophys Acta 1793, 615624.
  • 22
    Plemel RL, Lobingier BT, Brett CL, Angers CG, Nickerson DP, Paulsel A, Sprague D & Merz AJ (2011) Subunit organization and Rab interactions of Vps-C protein complexes that control endolysosomal membrane traffic. Mol Biol Cell 22, 13531363.
  • 23
    Bröcker C, Kuhlee A, Gatsogiannis C, Balderhaar HJK, Hönscher C, Engelbrecht-Vandré S, Ungermann C & Raunser S (2012) Molecular architecture of the multisubunit homotypic fusion and vacuole protein sorting (HOPS) tethering complex. Proc Natl Acad Sci USA 109, 19911996.
  • 24
    Peplowska K, Markgraf DF, Ostrowicz CW, Bange G & Ungermann C (2007) The CORVET tethering complex interacts with the yeast Rab5 homolog Vps21 and is involved in endo-lysosomal biogenesis. Dev Cell 12, 739750.
  • 25
    Abenza JF, Galindo A, Pantazopoulou A, Gil C, de los Ríos V & Peñalva MA (2010) Aspergillus RabB Rab5 integrates acquisition of degradative identity with the long distance movement of early endosomes. Mol Biol Cell 21, 27562769.
  • 26
    Kinchen JM, Doukoumetzidis K, Almendinger J, Stergiou L, Tosello-Trampont A, Sifri CD, Hengartner MO & Ravichandran KS (2008) A pathway for phagosome maturation during engulfment of apoptotic cells. Nat Cell Biol 10, 556566.
  • 27
    Hermann GJ, Schroeder LK, Hieb CA, Kershner AM, Rabbitts BM, Fonarev P, Grant BD & Priess JR (2005) Genetic analysis of lysosomal trafficking in Caenorhabditis elegans. Mol Biol Cell 16, 32733288.
  • 28
    Xiao H, Chen D, Fang Z, Xu J, Sun X, Song S, Liu J & Yang C (2009) Lysosome biogenesis mediated by vps-18 affects apoptotic cell degradation in Caenorhabditis elegans. Mol Biol Cell 20, 2132.
  • 29
    Sriram V, Krishnan KS & Mayor S (2003) deep-orange and carnation define distinct stages in late endosomal biogenesis in Drosophila melanogaster. J Cell Biol 161, 593607.
  • 30
    Pulipparacharuvil S, Akbar MA, Ray S, Sevrioukov EA, Haberman AS, Rohrer J & Krämer H (2005) Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules. J Cell Sci 118, 36633673.
  • 31
    Huizing M, Didier A, Walenta J, Anikster Y, Gahl WA & Krämer H (2001) Molecular cloning and characterization of human VPS18, VPS11, VPS16, and VPS33. Gene 264, 241247.
  • 32
    Gissen P, Johnson CA, Gentle D, Hurst LD, Doherty AJ, O'Kane CJ, Kelly DA & Maher ER (2005) Comparative evolutionary analysis of VPS33 homologues: genetic and functional insights. Hum Mol Genet 14, 12611270.
  • 33
    Poupon V, Stewart A, Gray SR, Piper RC & Luzio JP (2003) The role of mVps18p in clustering, fusion, and intracellular localization of late endocytic organelles. Mol Biol Cell 14, 40154027.
  • 34
    Richardson SCW, Winistorfer SC, Poupon V, Luzio JP & Piper RC (2004) Mammalian late vacuole protein sorting orthologues participate in early endosomal fusion and interact with the cytoskeleton. Mol Biol Cell 15, 11971210.
  • 35
    Bankaitis VAV, Johnson LML & Emr SDS (1986) Isolation of yeast mutants defective in protein targeting to the vacuole. Proc Natl Acad Sci USA 83, 90759079.
  • 36
    Rothman JHJ & Stevens THT (1986) Protein sorting in yeast: mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway. Cell 47, 10411051.
  • 37
    Banta LM, Robinson JS, Klionsky DJ & Emr SD (1988) Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting. J Cell Biol 107, 13691383.
  • 38
    Wada Y, Ohsumi Y & Anraku Y (1992) Genes for directing vacuolar morphogenesis in Saccharomyces cerevisiae. I. Isolation and characterization of two classes of vam mutants. J Biol Chem 267, 1866518670.
  • 39
    Raymond CK, Howald-Stevenson I, Vater CA & Stevens TH (1992) Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell 3, 13891402.
  • 40
    Ostrowicz CW, Bröcker C, Ahnert F, Nordmann M, Lachmann J, Peplowska K, Perz A, Auffarth K, Engelbrecht-Vandré S & Ungermann C (2010) Defined subunit arrangement and rab interactions are required for functionality of the HOPS tethering complex. Traffic 11, 13341346.
  • 41
    Whyte JRC & Munro S (2002) Vesicle tethering complexes in membrane traffic. J Cell Sci 115, 26272637.
  • 42
    Yu I-M & Hughson FM (2010) Tethering factors as organizers of intracellular vesicular traffic. Annu Rev Cell Dev Biol 26, 137156.
  • 43
    Ren Y, Yip CK, Tripathi A, Huie D, Jeffrey PD, Walz T & Hughson FM (2009) A structure-based mechanism for vesicle capture by the multisubunit tethering complex Dsl1. Cell 139, 11191129.
  • 44
    Lees JA, Yip CK, Walz T & Hughson FM (2010) Molecular organization of the COG vesicle tethering complex. Nat Struct Mol Biol 17, 12921297.
  • 45
    Munson M & Novick P (2006) The exocyst defrocked, a framework of rods revealed. Nat Struct Mol Biol 13, 577581.
  • 46
    Kim Y-G, Raunser S, Munger C, Wagner J, Song Y-L, Cygler M, Walz T, Oh B-H & Sacher M (2006) The architecture of the multisubunit TRAPP I complex suggests a model for vesicle tethering. Cell 127, 817830.
  • 47
    Wang C-W, Stromhaug PE, Kauffman EJ, Weisman LS & Klionsky DJ (2003) Yeast homotypic vacuole fusion requires the Ccz1–Mon1 complex during the tethering/docking stage. J Cell Biol 163, 973985.
  • 48
    Bayer MJ, Reese C, Buhler S, Peters C & Mayer A (2003) Vacuole membrane fusion: V0 functions after trans-SNARE pairing and is coupled to the Ca2+-releasing channel. J Cell Biol 162, 211222.
  • 49
    Peters C, Bayer MJ, Bühler S, Andersen JS, Mann M & Mayer A (2001) Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 409, 581588.
  • 50
    Strasser B, Iwaszkiewicz J, Michielin O & Mayer A (2011) The V-ATPase proteolipid cylinder promotes the lipid-mixing stage of SNARE-dependent fusion of yeast vacuoles. EMBO J 30, 41264141.
  • 51
    Cheever ML, Sato TK, de Beer T, Kutateladze TG, Emr SD & Overduin M (2001) Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes. Nat Cell Biol 3, 613618.
  • 52
    Stroupe C, Collins KM, Fratti RA & Wickner W (2006) Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p. EMBO J 25, 15791589.
  • 53
    Collins KM & Wickner WT (2007) Trans-SNARE complex assembly and yeast vacuole membrane fusion. Proc Natl Acad Sci USA 104, 87558760.
  • 54
    Starai VJV, Hickey CMC & Wickner WW (2008) HOPS proofreads the trans-SNARE complex for yeast vacuole fusion. Mol Biol Cell 19, 25002508.
  • 55
    Shen J, Tareste DC, Paumet F, Rothman JE & Melia TJ (2007) Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128, 183195.
  • 56
    Pieren M, Schmidt A & Mayer A (2010) The SM protein Vps33 and the t-SNARE H(abc) domain promote fusion pore opening. Nat Struct Mol Biol 17, 710717.
  • 57
    Südhof TC & Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323, 474477.
  • 58
    Izawa R, Onoue T, Furukawa N & Mima J (2012) Distinct contributions of vacuolar Qabc- and R-SNARE proteins to membrane fusion specificity. J Biol Chem 287, 34453453.
  • 59
    Piper RC, Bryant NJ & Stevens TH (1997) The membrane protein alkaline phosphatase is delivered to the vacuole by a route that is distinct from the VPS-dependent pathway. J Cell Biol 138, 531545.
  • 60
    Rehling P, Darsow T, Katzmann DJ & Emr SD (1999) Formation of AP-3 transport intermediates requires Vps41 function. Nat Cell Biol 1, 346353.
  • 61
    Darsow T, Katzmann DJ, Cowles CR & Emr SD (2001) Vps41p function in the alkaline phosphatase pathway requires homo-oligomerization and interaction with AP-3 through two distinct domains. Mol Biol Cell 12, 3751.
  • 62
    Angers CG & Merz AJ (2009) HOPS interacts with Apl5 at the vacuole membrane and is required for consumption of AP-3 transport vesicles. Mol Biol Cell 20, 45634574.
  • 63
    Cabrera M, Langemeyer L, Mari M, Rethmeier R, Orban I, Perz A, Bröcker C, Griffith J, Klose D, Steinhoff H-J et al. (2010) Phosphorylation of a membrane curvature-sensing motif switches function of the HOPS subunit Vps41 in membrane tethering. J Cell Biol 191, 845859.
  • 64
    Markgraf DF, Ahnert F, Arlt H, Mari M, Peplowska K, Epp N, Griffith J, Reggiori F & Ungermann C (2009) The CORVET subunit Vps8 cooperates with the Rab5 homolog Vps21 to induce clustering of late endosomal compartments. Mol Biol Cell 20, 52765289.
  • 65
    Lachmann J, Ungermann C & Engelbrecht-Vandré S (2011) Rab GTPases and tethering in the yeast endocytic pathway. Small GTPases 2, 182186.
  • 66
    Maldonado E, Hernandez F, Lozano C, Castro ME & Navarro RE (2006) The zebrafish mutant vps18 as a model for vesicle-traffic related hypopigmentation diseases. Pigment Cell Res 19, 315326.
  • 67
    Lindmo K, Simonsen A, Brech A, Finley K, Rusten TE & Stenmark H (2006) A dual function for Deep orange in programmed autophagy in the Drosophila melanogaster fat body. Exp Cell Res 312, 20182027.
  • 68
    Liang C, Lee J-S, Inn K-S, Gack MU, Li Q, Roberts EA, Vergne I, Deretic V, Feng P, Akazawa C et al. (2008) Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol 10, 776787.
  • 69
    Akbar MA, Tracy C, Kahr WHA & Krämer H (2011) The full-of-bacteria gene is required for phagosome maturation during immune defense in Drosophila. J Cell Biol 192, 383390.
  • 70
    Zhu G-D, Salazar G, Zlatic SA, Fiza B, Doucette MM, Heilman CJ, Levey AI, Faundez V & L'Hernault SW (2009) SPE-39 family proteins interact with the HOPS complex and function in lysosomal delivery. Mol Biol Cell 20, 12231240.
  • 71
    Zhu G-D & L'Hernault SW (2003) The Caenorhabditis elegans spe-39 gene is required for intracellular membrane reorganization during spermatogenesis. Genetics 165, 145157.
  • 72
    Kucharczyk R, Hoffman-Sommer M, Piekarska I, von Mollard GF & Rytka J (2009) The Saccharomyces cerevisiae protein Ccz1p interacts with components of the endosomal fusion machinery. FEMS Yeast Res 9, 565573.
  • 73
    Gengyo-Ando K, Kuroyanagi H, Kobayashi T, Murate M, Fujimoto K, Okabe S & Mitani S (2007) The SM protein VPS-45 is required for RAB-5-dependent endocytic transport in Caenorhabditis elegans. EMBO Rep 8, 152157.
  • 74
    Bryant NJ, Piper RC, Gerrard SR & Stevens TH (1998) Traffic into the prevacuolar/endosomal compartment of Saccharomyces cerevisiae: a VPS45-dependent intracellular route and a VPS45-independent, endocytic route. Eur J Cell Biol 76, 4352.
  • 75
    Furgason MLM, MacDonald C, Shanks SG, Ryder SP, Bryant NJ & Munson M (2009) The N-terminal peptide of the syntaxin Tlg2p modulates binding of its closed conformation to Vps45p. Proc Natl Acad Sci USA 106, 1430314308.
  • 76
    Harrington AJ, Yacoubian TA, Slone SR, Caldwell KA & Caldwell GA (2012) Functional analysis of VPS41-mediated neuroprotection in Caenorhabditis elegans and mammalian models of Parkinson's disease. J Neurosci 32, 21422153.
  • 77
    Messler S, Kropp S, Episkopou V, Felici A, Würthner J, Lemke R, Jerabek-Willemsen M, Willecke R, Scheu S, Pfeffer K et al. (2011) The TGF-β signaling modulators TRAP1/TGFBRAP1 and VPS39/Vam6/TLP are essential for early embryonic development. Immunobiology 216, 343350.
  • 78
    Caplan S, Hartnell LM, Aguilar RC, Naslavsky N & Bonifacino JS (2001) Human Vam6p promotes lysosome clustering and fusion in vivo. J Cell Biol 154, 109122.
  • 79
    Padilla-Parra S, Matos PM, Kondo N, Marin M, Santos NC & Melikyan GB (2012) Quantitative imaging of endosome acidification and single retrovirus fusion with distinct pools of early endosomes. Proc Natl Acad Sci USA 109, 1762717632.
  • 80
    Rao A, Simmons D & Sorkin A (2011) Differential subcellular distribution of endosomal compartments and the dopamine transporter in dopaminergic neurons. Mol Cell Neurosci 46, 148158.
  • 81
    Kim BY, Krämer H, Yamamoto A, Kominami E, Kohsaka S & Akazawa C (2001) Molecular characterization of mammalian homologues of class C Vps proteins that interact with syntaxin-7. J Biol Chem 276, 2939329402.
  • 82
    Garg S, Sharma M, Ung C, Tuli A, Barral DC, Hava DL, Veerapen N, Besra GS, Hacohen N & Brenner MB (2011) Lysosomal trafficking, antigen presentation, and microbial killing are controlled by the Arf-like GTPase Arl8b. Immunity 35, 182193.
  • 83
    Odorizzi G, Cowles CR & Emr SD (1998) The AP-3 complex: a coat of many colours. Trends Cell Biol 8, 282288.
  • 84
    Sevrioukov EA, He JP, Moghrabi N, Sunio A & Krämer H (1999) A role for the deep orange and carnation eye color genes in lysosomal delivery in Drosophila. Mol Cell 4, 479486.
  • 85
    Schonthaler HB, Fleisch VC, Biehlmaier O, Makhankov Y, Rinner O, Bahadori R, Geisler R, Schwarz H, Neuhauss SCF & Dahm R (2008) The zebrafish mutant lbk/vam6 resembles human multisystemic disorders caused by aberrant trafficking of endosomal vesicles. Development 135, 387399.
  • 86
    Chotard L, Mishra AK, Sylvain M-A, Tuck S, Lambright DG & Rocheleau CE (2010) TBC-2 regulates RAB-5/RAB-7-mediated endosomal trafficking in Caenorhabditis elegans. Mol Biol Cell 21, 22852296.
  • 87
    Poteryaev DD, Fares HH, Bowerman BB & Spang AA (2007) Caenorhabditis elegans SAND-1 is essential for RAB-7 function in endosomal traffic. EMBO J 26, 301312.
  • 88
    Rink J, Ghigo E, Kalaidzidis Y & Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735749.
  • 89
    Nordmann MM, Cabrera MM, Perz AA, Bröcker CC, Ostrowicz CC, Engelbrecht-Vandré SS & Ungermann CC (2010) The Mon1–Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7. Curr Biol 20, 16541659.
  • 90
    Lu N, Shen Q, Mahoney TR, Neukomm LJ, Wang Y & Zhou Z (2012) Two PI 3-kinases and one PI 3-phosphatase together establish the cyclic waves of phagosomal PtdIns(3)P critical for the degradation of apoptotic cells. PLoS Biol 10, e1001245.
  • 91
    Vieira OV, Bucci C, Harrison RE, Trimble WS, Lanzetti L, Gruenberg J, Schreiber AD, Stahl PD & Grinstein S (2003) Modulation of Rab5 and Rab7 recruitment to phagosomes by phosphatidylinositol 3-kinase. Mol Cell Biol 23, 25012514.
  • 92
    Xu H & Wickner W (2010) Phosphoinositides function asymmetrically for membrane fusion, promoting tethering and 3Q-SNARE subcomplex assembly. J Biol Chem 285, 3935939365.
  • 93
    Fratti RA, Jun Y, Merz AJ, Margolis N & Wickner W (2004) Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. J Cell Biol 167, 10871098.
  • 94
    Zieger M & Mayer A (2012) Yeast vacuoles fragment in an asymmetrical two-phase process with distinct protein requirements. Mol Biol Cell 23, 34383449.
  • 95
    Bugnicourt A, Froissard M, Sereti K, Ulrich HD, Haguenauer-Tsapis R & Galan J-M (2004) Antagonistic roles of ESCRT and Vps class C/HOPS complexes in the recycling of yeast membrane proteins. Mol Biol Cell 15, 42034214.
  • 96
    Wang T & Hong W (2006) RILP interacts with VPS22 and VPS36 of ESCRT-II and regulates their membrane recruitment. Biochem Biophys Res Commun 350, 413423.
  • 97
    Progida C, Malerød L, Stuffers S, Brech A, Bucci C & Stenmark H (2007) RILP is required for the proper morphology and function of late endosomes. J Cell Sci 120, 37293737.
  • 98
    Lindau M & Almers W (1995) Structure and function of fusion pores in exocytosis and ectoplasmic membrane fusion. Curr Opin Cell Biol 7, 509517.
  • 99
    Takeda K, Cabrera M, Rohde J, Bausch D, Jensen ON & Ungermann C (2008) The vacuolar V1/V0-ATPase is involved in the release of the HOPS subunit Vps41 from vacuoles, vacuole fragmentation and fusion. FEBS Lett 582, 15581563.
  • 100
    Duleh SN & Welch MD (2010) WASH and the Arp2/3 complex regulate endosome shape and trafficking. Cytoskeleton 67, 193206.
  • 101
    Eitzen G, Wang L, Thorngren N & Wickner W (2002) Remodeling of organelle-bound actin is required for yeast vacuole fusion. J Cell Biol 158, 669679.
  • 102
    Kjeken R, Egeberg M, Habermann A, Kuehnel M, Peyron P, Floetenmeyer M, Walther P, Jahraus A, Defacque H, Kuznetsov SA et al. (2004) Fusion between phagosomes, early and late endosomes: a role for actin in fusion between late, but not early endocytic organelles. Mol Biol Cell 15, 345358.
  • 103
    Loubéry S, Wilhelm C, Hurbain I, Neveu S, Louvard D & Coudrier E (2008) Different microtubule motors move early and late endocytic compartments. Traffic 9, 492509.
  • 104
    Loubéry S, Delevoye C, Louvard D, Raposo G & Coudrier E (2012) Myosin VI regulates actin dynamics and melanosome biogenesis. Traffic 13, 665680.
  • 105
    Cantalupo G, Alifano P, Roberti V, Bruni CB & Bucci C (2001) Rab-interacting lysosomal protein (RILP): the Rab7 effector required for transport to lysosomes. EMBO J 20, 683693.
  • 106
    Johansson M, Rocha N, Zwart W, Jordens I, Janssen L, Kuijl C, Olkkonen VM & Neefjes J (2007) Activation of endosomal dynein motors by stepwise assembly of Rab7–RILP–p150Glued, ORP1L, and the receptor βIII spectrin. J Cell Biol 176, 459471.