SEARCH

SEARCH BY CITATION

References

  • 1
    Pacher P, Bátkai S & Kunos G (2006) The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 58, 389462.
  • 2
    Pertwee RG, Howlett AC, Abood ME, Alexander SP, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, et al. (2010) International union of basic and clinical pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62, 588631.
  • 3
    Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A & Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 19461949.
  • 4
    Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR, et al. (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50, 8390.
  • 5
    Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A & Waku K (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215, 8997.
  • 6
    Hansen HS & Diep TA (2009) N-Acylethanolamines, anandamide and food intake. Biochem Pharmacol 78, 553560.
  • 7
    LoVerme J, La Rana G, Russo R, Calignano A & Piomelli D (2005) The search for the palmitoylethanolamide receptor. Life Sci 77, 16851698.
  • 8
    Pavón FJ, Serrano A, Romero-Cuevas M, Alonso M & Rodríguez de Fonseca F (2010) Oleoylethanolamide: a new player in peripheral control of energy metabolism. Therapeutic implications. Drug Discov Today Dis Mech 7, e175e183.
  • 9
    Hansen KB, Rosenkilde MM, Knop FK, Wellner N, Diep TA, Rehfeld JF, Andersen UB, Holst JJ & Hansen HS (2011) 2-Oleoyl glycerol is a GPR119 agonist and signals GLP-1 release in humans. J Clin Endocrinol Metab 96, E14091417.
  • 10
    Ueda N, Tsuboi K & Uyama T (2010a) Enzymological studies on the biosynthesis of N-acylethanolamines. Biochim Biophys Acta 1801, 12741285.
  • 11
    Ueda N, Tsuboi K, Uyama T & Ohnishi T (2011) Biosynthesis and degradation of the endocannabinoid 2-arachidonoylglycerol. BioFactors 37, 17.
  • 12
    Ueda N & Tsuboi K (2012) Discrimination between two endocannabinoids. Chem Biol 19, 545547.
  • 13
    Petrosino S & Di Marzo V (2010) FAAH and MAGL inhibitors: therapeutic opportunities from regulating endocannabinoid levels. Curr Opin Investig Drugs 11, 5162.
  • 14
    Elphick MR & Egertová M (2001) The neurobiology and evolution of cannabinoid signalling. Philos Trans R Soc Lond B Biol Sci 356, 381408.
  • 15
    McPartland JM, Matias I, Di Marzo V & Glass M (2006) Evolutionary origins of the endocannabinoid system. Gene 370, 6474.
  • 16
    Kilaru A, Blancaflor EB, Venables BJ, Tripathy S, Mysore KS & Chapman KD (2007) The N-acylethanolamine-mediated regulatory pathway in plants. Chem Biodivers 4, 19331955.
  • 17
    Lucanic M, Held JM, Vantipalli MC, Klang IM, Graham JB, Gibson BW, Lithgow GJ & Gill MS (2011) N-acylethanolamine signalling mediates the effect of diet on lifespan in Caenorhabditis elegans. Nature 473, 226229.
  • 18
    Coulon D, Faure L, Salmon M, Wattelet V & Bessoule JJ (2012a) N-Acylethanolamines and related compounds: aspects of metabolism and functions. Plant Sci 184, 129140.
  • 19
    Schmid HHO, Schmid PC & Natarajan V (1990) N-Acylated glycerophospholipids and their derivatives. Prog Lipid Res 29, 143.
  • 20
    Schmid HHO (2000) Pathways and mechanisms of N-acylethanolamine biosynthesis: can anandamide be generated selectively? Chem Phys Lipids 108, 7187.
  • 21
    Wellner N, Diep TA, Janfelt C & Hansen HS (2013) N-Acylation of phosphatidylethanolamine and its biological functions in mammals. Biochim Biophys Acta 1831, 652662.
  • 22
    Coulon D, Faure L, Salmon M, Wattelet V & Bessoule JJ (2012b) Occurrence, biosynthesis and functions of N-acylphosphatidylethanolamines (NAPE): not just precursors of N-acylethanolamines (NAE). Biochimie 94, 7585.
  • 23
    Gillum MP, Zhang D, Zhang X-M, Erion DM, Jamison RA, Choi C, Dong J, Shanabrough M, Duenas HR, Frederick DW, et al. (2008) N-Acylphosphatidylethanolamine, a gut-derived circulating factor induced by fat ingestion, inhibits food intake. Cell 135, 813824.
  • 24
    Wellner N, Tsuboi K, Madsen AN, Holst B, Diep TA, Nakao M, Tokumura A, Burns MP, Deutsch DG, Ueda N, et al. (2011) Studies on the anorectic effect of N-acylphosphatidylethanolamine and phosphatidylethanolamine in mice. Biochim Biophys Acta 1811, 508512.
  • 25
    Deutsch DG, Ueda N & Yamamoto S (2002) The fatty acid amide hydrolase (FAAH). Prostaglandins Leukot Essent Fatty Acids 66, 201210 (erratum appears in Prostaglandins Leukot Essent Fatty Acids 68, 69).
  • 26
    McKinney MK & Cravatt BF (2005) Structure and function of fatty acid amide hydrolase. Annu Rev Biochem 74, 411432.
  • 27
    Vandevoorde S & Lambert DM (2007) The multiple pathways of endocannabinoid metabolism: a zoom out. Chem Biodivers 4, 18581881.
  • 28
    Fowler CJ (2007) The contribution of cyclooxygenase-2 to endocannabinoid metabolism and action. Br J Pharmacol 152, 594601.
  • 29
    Hansen HS, Moesgaard B, Hansen HH & Petersen G (2000) N-Acylethanolamines and precursor phospholipids – relation to cell injury. Chem Phys Lipids 108, 135150.
  • 30
    Cadas H, di Tomaso E & Piomelli D (1997) Occurrence and biosynthesis of endogenous cannabinoid precursor, N-arachidonoyl phosphatidylethanolamine, in rat brain. J Neurosci 17, 12261242.
  • 31
    Jin X-H, Okamoto Y, Morishita J, Tsuboi K, Tonai T & Ueda N (2007) Discovery and characterization of a Ca2+-independent phosphatidylethanolamine N-acyltransferase generating the anandamide precursor and its congeners. J Biol Chem 282, 36143623.
  • 32
    Schmid HHO, Schmid PC & Berdyshev EV (2002) Cell signaling by endocannabinoids and their congeners: questions of selectivity and other challenges. Chem Phys Lipids 121, 111134.
  • 33
    Janfelt C, Wellner N, Leger PL, Kokesch-Himmelreich J, Hansen SH, Charriaut-Marlangue C & Hansen HS (2012) Visualization by mass spectrometry of 2-dimensional changes in rat brain lipids, including N-acylphosphatidylethanolamines, during neonatal brain ischemia. FASEB J 26, 26672673.
  • 34
    Okamoto Y, Wang J, Morishita J & Ueda N (2007) Biosynthetic pathways of the endocannabinoid anandamide. Chem Biodivers 4, 18421857.
  • 35
    Okamoto Y, Morishita J, Tsuboi K, Tonai T & Ueda N (2004) Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem 279, 52985305.
  • 36
    Wang J, Okamoto Y, Morishita J, Tsuboi K, Miyatake A & Ueda N (2006) Functional analysis of the purified anandamide-generating phospholipase D as a member of the metallo-β-lactamase family. J Biol Chem 281, 1232512335.
  • 37
    Ueda N, Liu Q & Yamanaka K (2001a) Marked activation of the N-acylphosphatidylethanolamine-hydrolyzing phosphodiesterase by divalent cations. Biochim Biophys Acta 1532, 121127.
  • 38
    Wang J, Okamoto Y, Tsuboi K & Ueda N (2008a) The stimulatory effect of phosphatidylethanolamine on N-acylphosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD). Neuropharmacology 54, 815.
  • 39
    Liu J, Wang L, Harvey-White J, Osei-Hyiaman D, Razdan R, Gong Q, Chan AC, Zhou Z, Huang BX, Kim HY, et al. (2006) A biosynthetic pathway for anandamide. Proc Natl Acad Sci USA 103, 1334513350.
  • 40
    Zhu C, Solorzano C, Sahar S, Realini N, Fung E, Sassone-Corsi P & Piomelli D (2011) Proinflammatory stimuli control N-acylphosphatidylethanolamine-specific phospholipase D expression in macrophages. Mol Pharmacol 79, 786792.
  • 41
    Morishita J, Okamoto Y, Tsuboi K, Ueno M, Sakamoto H, Maekawa N & Ueda N (2005) Regional distribution and age-dependent expression of N-acylphosphatidylethanolamine-hydrolyzing phospholipase D in rat brain. J Neurochem 94, 753762.
  • 42
    Moesgaard B, Petersen G, Jaroszewski JW & Hansen HS (2000) Age dependent accumulation of N-acyl-ethanolamine phospholipids in ischemic rat brain: a 31P NMR and enzyme activity study. J Lipid Res 41, 985990.
  • 43
    Leung D, Saghatelian A, Simon GM & Cravatt BF (2006) Inactivation of N-acyl phosphatidylethanolamine phospholipase D reveals multiple mechanisms for the biosynthesis of endocannabinoids. Biochemistry 45, 47204726.
  • 44
    Tsuboi K, Okamoto Y, Ikematsu N, Inoue M, Shimizu Y, Uyama T, Wang J, Deutsch DG, Burns MP, Ulloa NM, et al. (2011) Enzymatic formation of N-acylethanolamines from N-acylethanolamine plasmalogen through N-acylphosphatidylethanolamine-hydrolyzing phospholipase D-dependent and -independent pathways. Biochim Biophys Acta 1811, 565577.
  • 45
    Wangensteen T, Akselsen H, Holmen J, Undlien D & Retterstøl L (2011) A common haplotype in NAPEPLD is associated with severe obesity in a Norwegian population-based cohort (the HUNT study). Obesity 19, 612617.
  • 46
    Sugiura T, Kondo S, Sukagawa A, Tonegawa T, Nakane S, Yamashita A, Ishima Y & Waku K (1996) Transacylase-mediated and phosphodiesterase-mediated synthesis of N-arachidonoylethanolamine, an endogenous cannabinoid-receptor ligand, in rat brain microsomes. Comparison with synthesis from free arachidonic acid and ethanolamine. Eur J Biochem 240, 5362.
  • 47
    Arreaza G, Devane WA, Omeir RL, Sajnani G, Kunz J, Cravatt BF & Deutsch DG (1997) The cloned rat hydrolytic enzyme responsible for the breakdown of anandamide also catalyzes its formation via the condensation of arachidonic acid and ethanolamine. Neurosci Lett 234, 5962.
  • 48
    Kurahashi Y, Ueda N, Suzuki H, Suzuki M & Yamamoto S (1997) Reversible hydrolysis and synthesis of anandamide demonstrated by recombinant rat fatty-acid amide hydrolase. Biochem Biophys Res Commun 237, 512515.
  • 49
    Katayama K, Ueda N, Katoh I & Yamamoto S (1999) Equilibrium in the hydrolysis and synthesis of cannabimimetic anandamide demonstrated by a purified enzyme. Biochim Biophys Acta 1440, 205214.
  • 50
    Mukhopadhyay B, Cinar R, Yin S, Liu J, Tam J, Godlewski G, Harvey-White J, Mordi I, Cravatt BF, Lotersztajn S, et al. (2011) Hyperactivation of anandamide synthesis and regulation of cell-cycle progression via cannabinoid type 1 (CB1) receptors in the regenerating liver. Proc Natl Acad Sci USA 108, 63236328.
  • 51
    McCue JM, Driscoll WJ & Mueller GP (2009) In vitro synthesis of arachidonoyl amino acids by cytochrome c. Prostaglandins Other Lipid Mediat 90, 4248.
  • 52
    Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA & Gilula NB (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384, 8387.
  • 53
    McKinney MK & Cravatt BF (2003) Evidence for distinct roles in catalysis for residues of the serine-serine-lysine catalytic triad of fatty acid amide hydrolase. J Biol Chem 278, 3739337399.
  • 54
    Cravatt BF, Demarest K, Patricelli M, Bracey MH, Giang DK, Martin BR & Lichtman AH (2001) Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci USA 98, 93719376.
  • 55
    Clement AB, Hawkins EG, Lichtman AH & Cravatt BF (2003) Increased seizure susceptibility and proconvulsant activity of anandamide in mice lacking fatty acid amide hydrolase. J Neurosci 23, 39163923.
  • 56
    Saghatelian A, Trauger SA, Want EJ, Hawkins EG, Siuzdak G & Cravatt BF (2004) Assignment of endogenous substrates to enzymes by global metabolite profiling. Biochemistry 43, 1433214339.
  • 57
    Goparaju SK, Ueda N, Yamaguchi H & Yamamoto S (1998) Anandamide amidohydrolase reacting with 2-arachidonoylglycerol, another cannabinoid receptor ligand. FEBS Lett 422, 6973.
  • 58
    Goparaju SK, Ueda N, Taniguchi K & Yamamoto S (1999) Enzymes of porcine brain hydrolyzing 2-arachidonoylglycerol, an endogenous ligand of cannabinoid receptors. Biochem Pharmacol 57, 417423.
  • 59
    Blankman JL, Simon GM & Cravatt BF (2007) A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol 14, 13471356.
  • 60
    Sipe JC, Chiang K, Gerber AL, Beutler E & Cravatt BF (2002) A missense mutation in human fatty acid amide hydrolase associated with problem drug use. Proc Natl Acad Sci USA 99, 83948399.
  • 61
    Kathuria S, Gaetani S, Fegley D, Valiño F, Duranti A, Tontini A, Mor M, Tarzia G, La Rana G, Calignano A, et al. (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9, 7681.
  • 62
    Lichtman AH, Leung D, Shelton CC, Saghatelian A, Hardouin C, Boger DL & Cravatt BF (2004) Reversible inhibitors of fatty acid amide hydrolase that promote analgesia: evidence for an unprecedented combination of potency and selectivity. J Pharmacol Exp Ther 311, 441448.
  • 63
    Ahn K, Johnson DS, Mileni M, Beidler D, Long JZ, McKinney MK, Weerapana E, Sadagopan N, Liimatta M, Smith SE, et al. (2009) Discovery and characterization of a highly selective FAAH inhibitor that reduces inflammatory pain. Chem Biol 16, 411420.
  • 64
    Ahn K, Smith SE, Liimatta MB, Beidler D, Sadagopan N, Dudley DT, Young T, Wren P, Zhang Y, Swaney S, et al. (2011) Mechanistic and pharmacological characterization of PF-04457845: a highly potent and selective fatty acid amide hydrolase inhibitor that reduces inflammatory and noninflammatory pain. J Pharmacol Exp Ther 338, 114124.
  • 65
    Nomura DK, Blankman JL, Simon GM, Fujioka K, Issa RS, Ward AM, Cravatt BF & Casida JE (2008) Activation of the endocannabinoid system by organophosphorus nerve agents. Nat Chem Biol 4, 373378.
  • 66
    Long JZ, Nomura DK, Vann RE, Walentiny DM, Booker L, Jin X, Burston JJ, Sim-Selley LJ, Lichtman AH, Wiley JL, et al. (2009a) Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo. Proc Natl Acad Sci USA 106, 2027020275.
  • 67
    Wei BQ, Mikkelsen TS, McKinney MK, Lander ES & Cravatt BF (2006) A second fatty acid amide hydrolase with variable distribution among placental mammals. J Biol Chem 281, 3656936578.
  • 68
    Kaczocha M, Glaser ST, Chae J, Brown DA & Deutsch DG (2010) Lipid droplets are novel sites of N-acylethanolamine inactivation by fatty acid amide hydrolase-2. J Biol Chem 285, 27962806.
  • 69
    Fu J, Bottegoni G, Sasso O, Bertorelli R, Rocchia W, Masetti M, Guijarro A, Lodola A, Armirotti A, Garau G, et al. (2011) A catalytically silent FAAH-1 variant drives anandamide transport in neurons. Nat Neurosci 15, 6469.
  • 70
    Leung K, Vivieca S, Sun J, Glaser ST, Deutsch DG & Kaczocha M (2012) FLAT is not an intracellular anandamide transporter. 22nd Annual Symposium on the Cannabinoids, International Cannabinoid Research Society, Research Triangle Park, NC, USA, pp. 59.
  • 71
    Bornheim LM, Kim KY, Chen B & Correia MA (1993) The effect of cannabidiol on mouse hepatic microsomal cytochrome P450-dependent anandamide metabolism. Biochem Biophys Res Commun 197, 740746.
  • 72
    Ueda N, Yamamoto K, Yamamoto S, Tokunaga T, Shirakawa E, Shinkai H, Ogawa M, Sato T, Kudo I, Inoue K, et al. (1995) Lipoxygenase-catalyzed oxygenation of arachidonylethanolamide, a cannabinoid receptor agonist. Biochim Biophys Acta 1254, 127134.
  • 73
    Hampson AJ, Hill WAG, Zan-Phillips M, Makriyannis A, Leung E, Eglen RM & Bornheim LM (1995) Anandamide hydroxylation by brain lipoxygenase: metabolite structures and potencies at the cannabinoid receptor. Biochim Biophys Acta 1259, 173179.
  • 74
    Yu M, Ives D & Ramesha CS (1997) Synthesis of prostaglandin E2 ethanolamide from anandamide by cyclooxygenase-2. J Biol Chem 272, 2118121186.
  • 75
    Kozak KR, Crews BC, Morrow JD, Wang LH, Ma YH, Weinander R, Jakobsson PJ & Marnett LJ (2002) Metabolism of the endocannabinoids, 2-arachidonylglycerol and anandamide, into prostaglandin, thromboxane, and prostacyclin glycerol esters and ethanolamides. J Biol Chem 277, 4487744885.
  • 76
    Anantharaman V & Aravind L (2003) Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes. Genome Biol 4, R11.
  • 77
    Shinohara N, Uyama T, Jin X-H, Tsuboi K, Tonai T, Houchi H & Ueda N (2011) Enzymological analysis of the tumor suppressor A-C1 reveals a novel group of phospholipid-metabolizing enzymes. J Lipid Res 52, 19271935.
  • 78
    Hajnal A, Klemenz R & Schäfer R (1994) Subtraction cloning of H-rev107, a gene specifically expressed in H-ras resistant fibroblasts. Oncogene 9, 479490.
  • 79
    Akiyama H, Hiraki Y, Noda M, Shigeno C, Ito H & Nakamura T (1999) Molecular cloning and biological activity of a novel Ha-Ras suppressor gene predominantly expressed in skeletal muscle, heart, brain, and bone marrow by differential display using clonal mouse EC cells, ATDC5. J Biol Chem 274, 3219232197.
  • 80
    Shyu R-Y, Hsieh Y-C, Tsai F-M, Wu C-C & Jiang S-Y (2009) Cloning and functional characterization of the HRASLS2 gene. Amino Acids 35, 129137.
  • 81
    Disepio D, Ghosn C, Eckert RL, Deucher A, Robinson N, Duvic M, Chandraratna RA & Nagpal S (1998) Identification and characterization of a retinoid-induced class II tumor suppressor/growth regulatory gene. Proc Natl Acad Sci USA 95, 1481114815.
  • 82
    Jin X-H, Uyama T, Wang J, Okamoto Y, Tonai T & Ueda N (2009) cDNA cloning and characterization of human and mouse Ca2+-independent phosphatidylethanolamine N-acyltransferases. Biochim Biophys Acta 1791, 3238.
  • 83
    Uyama T, Morishita J, Jin X-H, Okamoto Y, Tsuboi K & Ueda N (2009a) The tumor suppressor gene H-Rev107 functions as a novel Ca2+-independent cytosolic phospholipase A1/2 of the thiol hydrolase-type. J Lipid Res 50, 685693.
  • 84
    Uyama T, Jin X-H, Tsuboi K, Tonai T & Ueda N (2009b) Characterization of the human tumor suppressors TIG3 and HRASLS2 as phospholipid-metabolizing enzymes. Biochim Biophys Acta 1791, 11141124.
  • 85
    Golczak M, Kiser PD, Sears AE, Lodowski DT, Blaner WS & Palczewski K (2012) Structural basis for the acyltransferase activity of lecithin:retinol acyltransferase-like proteins. J Biol Chem 287, 2379023807.
  • 86
    Uyama T, Ikematsu N, Inoue M, Shinohara N, Jin X-H, Tsuboi K, Tonai T, Tokumura A & Ueda N (2012a) Generation of N-acylphosphatidylethanolamine by members of the phospholipase A/acyltransferase (PLA/AT) family. J Biol Chem 287, 3190531919.
  • 87
    Duncan RE, Sarkadi-Nagy E, Jaworski K, Ahmadian M & Sul HS (2008) Identification and functional characterization of adipose-specific phospholipase A2 (AdPLA). J Biol Chem 283, 2542825436.
  • 88
    Pang XY, Cao J, Addington L, Lovell S, Battaile KP, Zhang N, Rao JL, Dennis EA & Moise AR (2012) Structure/function relationships of adipose phospholipase A2 containing a Cys-His-His catalytic triad. J Biol Chem 287, 3526035274.
  • 89
    Hummasti S, Hong C, Bensinger SJ & Tontonoz P (2008) HRASLS3 is a PPARγ-selective target gene that promotes adipocyte differentiation. J Lipid Res 49, 25352544.
  • 90
    Jaworski K, Ahmadian M, Duncan RE, Sarkadi-Nagy E, Varady KA, Hellerstein MK, Lee HY, Samuel VT, Shulman GI, Kim KH, et al. (2009) AdPLA ablation increases lipolysis and prevents obesity induced by high-fat feeding or leptin deficiency. Nat Med 15, 159168.
  • 91
    Uyama T, Ichi I, Kono N, Inoue A, Tsuboi K, Jin X-H, Araki N, Aoki J, Arai H & Ueda N (2012b) Regulation of peroxisomal lipid metabolism by catalytic activity of tumor suppressor H-rev107. J Biol Chem 287, 27062718.
  • 92
    Ren X, Lin J, Jin C & Xia B (2010) Solution structure of the N-terminal catalytic domain of human H-REV107 – a novel circular permutated NlpC/P60 domain. FEBS Lett 584, 42224226.
  • 93
    Natarajan V, Schmid PC, Reddy PV & Schmid HHO (1984) Catabolism of N-acylethanolamine phospholipids by dog brain preparations. J Neurochem 42, 16131619.
  • 94
    Sun Y-X, Tsuboi K, Okamoto Y, Tonai T, Murakami M, Kudo I & Ueda N (2004) Biosynthesis of anandamide and N-palmitoylethanolamine by sequential actions of phospholipase A2 and lysophospholipase D. Biochem J 380, 749756.
  • 95
    Simon GM & Cravatt BF (2006) Endocannabinoid biosynthesis proceeding through glycerophospho-N-acyl ethanolamine and a role for α/β-hydrolase 4 in this pathway. J Biol Chem 281, 2646526472.
  • 96
    Simon GM & Cravatt BF (2008) Anandamide biosynthesis catalyzed by the phosphodiesterase GDE1 and detection of glycerophospho-N-acyl ethanolamine precursors in mouse brain. J Biol Chem 283, 93419349.
  • 97
    Simpson CD, Hurren R, Kasimer D, MacLean N, Eberhard Y, Ketela T, Moffat J & Schimmer AD (2012) A genome wide shRNA screen identifies α/β hydrolase domain containing 4 (ABHD4) as a novel regulator of anoikis resistance. Apoptosis 17, 666678.
  • 98
    Zheng B, Chen D & Farquhar MG (2000) MIR16, a putative membrane glycerophosphodiester phosphodiesterase, interacts with RGS16. Proc Natl Acad Sci USA 97, 39994004.
  • 99
    Zheng B, Berrie CP, Corda D & Farquhar MG (2003) GDE1/MIR16 is a glycerophosphoinositol phosphodiesterase regulated by stimulation of G protein-coupled receptors. Proc Natl Acad Sci USA 100, 17451750.
  • 100
    Simon GM & Cravatt BF (2010) Characterization of mice lacking candidate N-acyl ethanolamine biosynthetic enzymes provides evidence for multiple pathways that contribute to endocannabinoid production in vivo. Mol BioSyst 6, 14111418.
  • 101
    Kopp F, Komatsu T, Nomura DK, Trauger SA, Thomas JR, Siuzdak G, Simon GM & Cravatt BF (2010) The glycerophospho metabolome and its influence on amino acid homeostasis revealed by brain metabolomics of GDE1(–/–) mice. Chem Biol 17, 831840.
  • 102
    Tsuboi K, Ikematsu N, Uyama T, Deutsch DG, Tokumura A & Ueda N (2013) Biosynthetic pathways of bioactive N-acylethanolamines in brain. CNS Neurol Disord Drug Targets, Epub-20130204-9.
  • 103
    Astarita G, Ahmed F & Piomelli D (2008) Identification of biosynthetic precursors for the endocannabinoid anandamide in the rat brain. J Lipid Res 49, 4857.
  • 104
    Schmid PC, Reddy PV, Natarajan V & Schmid HHO (1983) Metabolism of N-acylethanolamine phospholipids by a mammalian phosphodiesterase of the phospholipase D type. J Biol Chem 258, 93029306.
  • 105
    Liu J, Bátkai S, Pacher P, Harvey-White J, Wagner JA, Cravatt BF, Gao B & Kunos G (2003) Lipopolysaccharide induces anandamide synthesis in macrophages via CD14/MAPK/phosphoinositide 3-kinase/NF-κB independently of platelet-activating factor. J Biol Chem 278, 4503445039.
  • 106
    Liu J, Wang L, Harvey-White J, Huang BX, Kim HY, Luquet S, Palmiter RD, Krystal G, Rai R, Mahadevan A, et al. (2008) Multiple pathways involved in the biosynthesis of anandamide. Neuropharmacology 54, 17.
  • 107
    Ueda N, Yamanaka K, Terasawa Y & Yamamoto S (1999) An acid amidase hydrolyzing anandamide as an endogenous ligand for cannabinoid receptors. FEBS Lett 454, 267270.
  • 108
    Ueda N, Yamanaka K & Yamamoto S (2001b) Purification and characterization of an acid amidase selective for N-palmitoylethanolamine, a putative endogenous anti-inflammatory substance. J Biol Chem 276, 3555235557.
  • 109
    Tsuboi K, Sun Y-X, Okamoto Y, Araki N, Tonai T & Ueda N (2005) Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase. J Biol Chem 280, 1108211092.
  • 110
    Tsuboi K, Takezaki N & Ueda N (2007a) The N-acylethanolamine-hydrolyzing acid amidase (NAAA). Chem Biodivers 4, 19141925.
  • 111
    Ueda N, Tsuboi K & Uyama T (2010b) N-Acylethanolamine metabolism with special reference to N-acylethanolamine-hydrolyzing acid amidase (NAAA). Prog Lipid Res 49, 299315.
  • 112
    Hong S-B, Li C-M, Rhee H-J, Park J-H, He X, Levy B, Yoo OJ & Schuchman EH (1999) Molecular cloning and characterization of a human cDNA and gene encoding a novel acid ceramidase-like protein. Genomics 62, 232241.
  • 113
    Zhao L-Y, Tsuboi K, Okamoto Y, Nagahata S & Ueda N (2007) Proteolytic activation and glycosylation of N-acylethanolamine-hydrolyzing acid amidase, a lysosomal enzyme involved in the endocannabinoid metabolism. Biochim Biophys Acta 1771, 13971405.
  • 114
    West JM, Zvonok N, Whitten KM, Wood JT & Makriyannis A (2012a) Mass spectrometric characterization of human N-acylethanolamine-hydrolyzing acid amidase. J Proteome Res 11, 972981.
  • 115
    Shtraizent N, Eliyahu E, Park J-H, He X, Shalgi R & Schuchman EH (2008) Autoproteolytic cleavage and activation of human acid ceramidase. J Biol Chem 283, 1125311259.
  • 116
    Armirotti A, Romeo E, Ponzano S, Mengatto L, Dionisi M, Karacsonyi C, Bertozzi F, Garau G, Tarozzo G, Reggiani A, et al. (2012) β-Lactones inhibit N-acylethanolamine acid amidase by S-acylation of the catalytic N-terminal cysteine. ACS Med Chem Lett 3, 422426.
  • 117
    West JM, Zvonok N, Whitten KM, Vadivel SK, Bowman AL & Makriyannis A (2012b) Biochemical and mass spectrometric characterization of human N-acylethanolamine-hydrolyzing acid amidase inhibition. PLoS One 7, e43877.
  • 118
    Sun Y-X, Tsuboi K, Zhao L-Y, Okamoto Y, Lambert DM & Ueda N (2005) Involvement of N-acylethanolamine-hydrolyzing acid amidase in the degradation of anandamide and other N-acylethanolamines in macrophages. Biochim Biophys Acta 1736, 211220.
  • 119
    Tsuboi K, Zhao L-Y, Okamoto Y, Araki N, Ueno M, Sakamoto H & Ueda N (2007b) Predominant expression of lysosomal N-acylethanolamine-hydrolyzing acid amidase in macrophages revealed by immunochemical studies. Biochim Biophys Acta 1771, 623632.
  • 120
    Wang J, Zhao L-Y, Uyama T, Tsuboi K, Wu X-X, Kakehi Y & Ueda N (2008b) Expression and secretion of N-acylethanolamine-hydrolysing acid amidase in human prostate cancer cells. J Biochem 144, 685690.
  • 121
    Tai T, Tsuboi K, Uyama T, Masuda K, Cravatt BF, Houchi H & Ueda N (2012) Endogenous molecules stimulating N-acylethanolamine-hydrolyzing acid amidase (NAAA). ACS Chem Neurosci 3, 379385.
  • 122
    Petrosino S, Iuvone T & Di Marzo V (2010) N-Palmitoyl-ethanolamine: biochemistry and new therapeutic opportunities. Biochimie 92, 724727.
  • 123
    Vandevoorde S, Tsuboi K, Ueda N, Jonsson K-O, Fowler CJ & Lambert DM (2003) Esters, retroesters and retroamide of palmitic acid: pool for the first selective inhibitors of N-palmitoylethanolamine-selective acid amidase. J Med Chem 46, 43734376.
  • 124
    Tsuboi K, Hilligsmann C, Vandevoorde S, Lambert DM & Ueda N (2004) N-Cyclohexanecarbonylpentadecylamine: a selective inhibitor of the acid amidase hydrolysing N-acylethanolamines, as a tool to distinguish acid amidase from fatty acid amide hydrolase. Biochem J 379, 99106.
  • 125
    Solorzano C, Zhu C, Battista N, Astarita G, Lodola A, Rivara S, Mor M, Russo R, Maccarrone M, Antonietti F, et al. (2009) Selective N-acylethanolamine-hydrolyzing acid amidase inhibition reveals a key role for endogenous palmitoylethanolamide in inflammation. Proc Natl Acad Sci USA 106, 2096620971.
  • 126
    Solorzano C, Antonietti F, Duranti A, Tontini A, Rivara S, Lodola A, Vacondio F, Tarzia G, Piomelli D & Mor M (2010) Synthesis and structure–activity relationships of N-(2-oxo-3-oxetanyl)amides as N-acylethanolamine-hydrolyzing acid amidase inhibitors. J Med Chem 53, 57705781.
  • 127
    Saturnino C, Petrosino S, Ligresti A, Palladino C, De Martino G, Bisogno T & Di Marzo V (2010) Synthesis and biological evaluation of new potential inhibitors of N-acylethanolamine hydrolyzing acid amidase. Bioorg Med Chem Lett 20, 12101213.
  • 128
    Duranti A, Tontini A, Antonietti F, Vacondio F, Fioni A, Silva C, Lodola A, Rivara S, Solorzano C, Piomelli D, et al. (2012) N-(2-Oxo-3-oxetanyl)carbamic acid esters as N-acylethanolamine acid amidase inhibitors: synthesis and structure–activity and structure–property relationships. J Med Chem 55, 48244836.
  • 129
    Yamano Y, Tsuboi K, Hozaki Y, Takahashi K, Jin X-H, Ueda N & Wada A (2012) Lipophilic amines as potent inhibitors of N-acylethanolamine-hydrolyzing acid amidase. Bioorg Med Chem 20, 36583665.
  • 130
    Li Y, Yang L, Chen L, Zhu C, Huang R, Zheng X, Qiu Y & Fu J (2012) Design and synthesis of potent N-acylethanolamine-hydrolyzing acid amidase (NAAA) inhibitor as anti-inflammatory compounds. PLoS One 7, e43023.
  • 131
    Prescott SM & Majerus PW (1983) Characterization of 1,2-diacylglycerol hydrolysis in human platelets. Demonstration of an arachidonoyl-monoacylglycerol intermediate. J Biol Chem 258, 764769.
  • 132
    Sugiura T, Kishimoto S, Oka S & Gokoh M (2006) Biochemistry, pharmacology and physiology of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand. Prog Lipid Res 45, 405446.
  • 133
    Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M & Watanabe M (2009) Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89, 309380.
  • 134
    Fukami K, Inanobe S, Kanemaru K & Nakamura Y (2010) Phospholipase C is a key enzyme regulating intracellular calcium and modulating the phosphoinositide balance. Prog Lipid Res 49, 429437.
  • 135
    Bisogno T, Melck D, De Petrocellis L & Di Marzo V (1999) Phosphatidic acid as the biosynthetic precursor of the endocannabinoid 2-arachidonoylglycerol in intact mouse neuroblastoma cells stimulated with ionomycin. J Neurochem 72, 21132119.
  • 136
    Oka S, Yanagimoto S, Ikeda S, Gokoh M, Kishimoto S, Waku K, Ishima Y & Sugiura T (2005) Evidence for the involvement of the cannabinoid CB2 receptor and its endogenous ligand 2-arachidonoylglycerol in 12-O-tetradecanoylphorbol-13-acetate-induced acute inflammation in mouse ear. J Biol Chem 280, 1848818497.
  • 137
    Ueda H, Kobayashi T, Kishimoto M, Tsutsumi T & Okuyama H (1993) A possible pathway of phosphoinositide metabolism through EDTA-insensitive phospholipase A1 followed by lysophosphoinositide-specific phospholipase C in rat brain. J Neurochem 61, 18741881.
  • 138
    Tsutsumi T, Kobayashi T, Ueda H, Yamauchi E, Watanabe S & Okuyama H (1994) Lysophosphoinositide-specific phospholipase C in rat brain synaptic plasma membranes. Neurochem Res 19, 399406.
  • 139
    Nakane S, Oka S, Arai S, Waku K, Ishima Y, Tokumura A & Sugiura T (2002) 2-Arachidonoyl-sn-glycero-3-phosphate, an arachidonic acid-containing lysophosphatidic acid: occurrence and rapid enzymatic conversion to 2-arachidonoyl-sn-glycerol, a cannabinoid receptor ligand, in rat brain. Arch Biochem Biophys 402, 5158.
  • 140
    Okazaki T, Sagawa N, Okita JR, Bleasdale JE, MacDonald PC & Johnston JM (1981) Diacylglycerol metabolism and arachidonic acid release in human fetal membranes and decidua vera. J Biol Chem 256, 73167321.
  • 141
    Chau LY & Tai HH (1981) Release of arachidonate from diglyceride in human platelets requires the sequential action of a diglyceride lipase and a monoglyceride lipase. Biochem Biophys Res Commun 100, 16881695.
  • 142
    Bisogno T, Howell F, Williams G, Minassi A, Cascio MG, Ligresti A, Matias I, Schiano-Moriello A, Paul P, Williams EJ, et al. (2003) Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol 163, 463468.
  • 143
    Jung KM, Astarita G, Zhu C, Wallace M, Mackie K & Piomelli D (2007) A key role for diacylglycerol lipase-alpha in metabotropic glutamate receptor-dependent endocannabinoid mobilization. Mol Pharmacol 72, 612621.
  • 144
    Tanimura A, Yamazaki M, Hashimotodani Y, Uchigashima M, Kawata S, Abe M, Kita Y, Hashimoto K, Shimizu T, Watanabe M, et al. (2010) The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase α mediates retrograde suppression of synaptic transmission. Neuron 65, 320327.
  • 145
    Gao Y, Vasilyev DV, Goncalves MB, Howell FV, Hobbs C, Reisenberg M, Shen R, Zhang MY, Strassle BW, Lu P, et al. (2010) Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J Neurosci 30, 20172024.
  • 146
    Hoover HS, Blankman JL, Niessen S & Cravatt BF (2008) Selectivity of inhibitors of endocannabinoid biosynthesis evaluated by activity-based protein profiling. Bioorg Med Chem Lett 18, 58385841.
  • 147
    Bisogno T, Cascio MG, Saha B, Mahadevan A, Urbani P, Minassi A, Appendino G, Saturnino C, Martin B, Razdan R, et al. (2006) Development of the first potent and specific inhibitors of endocannabinoid biosynthesis. Biochim Biophys Acta 1761, 205212.
  • 148
    Bisogno T, Burston JJ, Rai R, Allarà M, Saha B, Mahadevan A, Razdan RK, Wiley JL & Di Marzo V (2009) Synthesis and pharmacological activity of a potent inhibitor of the biosynthesis of the endocannabinoid 2-arachidonoylglycerol. ChemMedChem 4, 946950.
  • 149
    Min R, Testa-Silva G, Heistek TS, Canto CB, Lodder JC, Bisogno T, Di Marzo V, Brussaard AB, Burnashev N & Mansvelder HD (2010) Diacylglycerol lipase is not involved in depolarization-induced suppression of inhibition at unitary inhibitory connections in mouse hippocampus. J Neurosci 30, 27102715.
  • 150
    Fowler CJ (2012) Monoacylglycerol lipase – a target for drug development? Br J Pharmacol 166, 15681585.
  • 151
    Tornqvist H & Belfrage P (1976) Purification and some properties of a monoacylglycerol-hydrolyzing enzyme of rat adipose tissue. J Biol Chem 251, 813819.
  • 152
    Karlsson M, Contreras JA, Hellman U, Tornqvist H & Holm C (1997) cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. Evolutionary relationship to esterases, lysophospholipases, and haloperoxidases. J Biol Chem 272, 2721827223.
  • 153
    Labar G, Wouters J & Lambert DM (2010a) A review on the monoacylglycerol lipase: at the interface between fat and endocannabinoid signalling. Curr Med Chem 17, 25882607.
  • 154
    Labar G, Bauvois C, Borel F, Ferrer J-L, Wouters J & Lambert DM (2010b) Crystal structure of the human monoacylglycerol lipase, a key actor in endocannabinoid signaling. ChemBioChem 11, 218227.
  • 155
    Bertrand T, Augé F, Houtmann J, Rak A, Vallée F, Mikol V, Berne PF, Michot N, Cheuret D, Hoornaert C, et al. (2010) Structural basis for human monoglyceride lipase inhibition. J Mol Biol 396, 663673.
  • 156
    Dinh TP, Carpenter D, Leslie FM, Freund TF, Katona I, Sensi SL, Kathuria S & Piomelli D (2002) Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci USA 99, 1081910824 (erratum appears in Proc Natl Acad Sci USA 99, 13961).
  • 157
    Tanimura A, Uchigashima M, Yamazaki M, Uesaka N, Mikuni T, Abe M, Hashimoto K, Watanabe M, Sakimura K & Kano M (2012) Synapse type-independent degradation of the endocannabinoid 2-arachidonoylglycerol after retrograde synaptic suppression. Proc Natl Acad Sci USA 109, 1219512200.
  • 158
    Minkkilä A, Saario S & Nevalainen T (2010) Discovery and development of endocannabinoid-hydrolyzing enzyme inhibitors. Curr Top Med Chem 10, 828858.
  • 159
    Long JZ, Li W, Booker L, Burston JJ, Kinsey SG, Schlosburg JE, Pavon FJ, Serrano AM, Selley DE, Parsons LH, et al. (2009b) Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol 5, 3744.
  • 160
    Chang JW, Niphakis MJ, Lum KM, Cognetta AB III, Wang C, Matthews ML, Niessen S, Buczynski MW, Parsons LH & Cravatt BF (2012) Highly selective inhibitors of monoacylglycerol lipase bearing a reactive group that is bioisosteric with endocannabinoid substrates. Chem Biol 19, 579588.
  • 161
    Schlosburg JE, Blankman JL, Long JZ, Nomura DK, Pan B, Kinsey SG, Nguyen PT, Ramesh D, Booker L, Burston JJ, et al. (2010) Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat Neurosci 13, 11131119.
  • 162
    Chanda PK, Gao Y, Mark L, Btesh J, Strassle BW, Lu P, Piesla MJ, Zhang MY, Bingham B, Uveges A, et al. (2010) Monoacylglycerol lipase activity is a critical modulator of the tone and integrity of the endocannabinoid system. Mol Pharmacol 78, 9961003.
  • 163
    Taschler U, Radner FP, Heier C, Schreiber R, Schweiger M, Schoiswohl G, Preiss-Landl K, Jaeger D, Reiter B, Koefeler HC, et al. (2011) Monoglyceride lipase deficiency in mice impairs lipolysis and attenuates diet-induced insulin resistance. J Biol Chem 286, 1746717477.
  • 164
    Nomura DK, Morrison BE, Blankman JL, Long JZ, Kinsey SG, Marcondes MC, Ward AM, Hahn YK, Lichtman AH, Conti B, et al. (2011) Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science 334, 809813.
  • 165
    Nomura DK, Long JZ, Niessen S, Hoover HS, Ng SW & Cravatt BF (2010) Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140, 4961.
  • 166
    Savinainen JR, Saario SM & Laitinen JT (2012) The serine hydrolases MAGL, ABHD6 and ABHD12 as guardians of 2-arachidonoylglycerol signalling through cannabinoid receptors. Acta Physiol (Oxf) 204, 267276 [erratum appears in Acta Physiol (Oxf) 204, 460].
  • 167
    Navia-Paldanius D, Savinainen JR & Laitinen JT (2012) Biochemical and pharmacological characterization of human α/β-hydrolase domain containing 6 (ABHD6) and 12 (ABHD12). J Lipid Res 53, 24132424.
  • 168
    Marrs WR, Blankman JL, Horne EA, Thomazeau A, Lin YH, Coy J, Bodor AL, Muccioli GG, Hu SS, Woodruff G, et al. (2010) The serine hydrolase ABHD6 controls the accumulation and efficacy of 2-AG at cannabinoid receptors. Nat Neurosci 13, 951957.
  • 169
    Marrs WR, Horne EA, Ortega-Gutierrez S, Cisneros JA, Xu C, Lin YH, Muccioli GG, Lopez-Rodriguez ML & Stella N (2011) Dual inhibition of α/β-hydrolase domain 6 and fatty acid amide hydrolase increases endocannabinoid levels in neurons. J Biol Chem 286, 2872328728.
  • 170
    Fiskerstrand T, H'mida-Ben Brahim D, Johansson S, M'zahem A, Haukanes BI, Drouot N, Zimmermann J, Cole AJ, Vedeler C, Bredrup C, et al. (2010) Mutations in ABHD12 cause the neurodegenerative disease PHARC: an inborn error of endocannabinoid metabolism. Am J Hum Genet 87, 410417.
  • 171
    Kozak KR & Marnett LJ (2002) Oxidative metabolism of endocannabinoids. Prostaglandins Leukot Essent Fatty Acids 66, 211220.
  • 172
    Rouzer CA & Marnett LJ (2008) Non-redundant functions of cyclooxygenases: oxygenation of endocannabinoids. J Biol Chem 283, 80658069.
  • 173
    Duggan KC, Hermanson DJ, Musee J, Prusakiewicz JJ, Scheib JL, Carter BD, Banerjee S, Oates JA & Marnett LJ (2011) (R)-Profens are substrate-selective inhibitors of endocannabinoid oxygenation by COX-2. Nat Chem Biol 7, 803809.
  • 174
    Blankman JL, Long JZ, Trauger SA, Siuzdak G & Cravatt BF (2013) ABHD12 controls brain lysophosphatidylserine pathways that are deregulated in a murine model of the neurodegenerative disease PHARC. Proc Natl Acad Sci USA 110, 15001505.