SEARCH

SEARCH BY CITATION

References

  • 1
    Talalay P & Wang VS (1955) Enzymic isomerization of Δ5–3–ketosteroids. Biochim Biophys Acta 18, 300301.
  • 2
    Murota S, Fenselau CC & Talalay P (1971) Partial purification of a beef adrenal Δ5–3–ketosteroid isomerase and studies of its mechanism of action. Steroids 17, 2537.
  • 3
    Hawkinson DC, Eames TCM & Pollack RM (1991) Energetics of 3–oxo-Δ5-steroid isomerase: source of the catalytic power of the enzyme. Biochemistry 30, 1084910858.
  • 4
    Bernasconi CF (1992) The principle of nonperfect synchronization. Adv Phys Org Chem 27, 119238.
  • 5
    Bernasconi CF (1992) The principle of nonperfect synchronization – more than a qualitative concept. Acc Chem Res 25, 916.
  • 6
    Bernasconi CF & Wenzel PJ (1996) Kinetics of proton transfer from 2–nitro-4–X–phenylacetonitriles to piperidine and morpholine in aqueous Me2SO. Solvent and substituent effects on intrinsic rate constants. Transition state imbalances. J Am Chem Soc 118, 1144611453.
  • 7
    Bernasconi CF, Panda M & Stronach MW (1995) Kinetics of reversible carbon deprotonation of 2–nitroethanol and 2–nitro-1,3–propanediol by hydroxide ion, water, amines, and carboxylate ions. A normal Brønsted α despite an imbalanced transition-state. J Am Chem Soc 117, 92069212.
  • 8
    Keeffe JR & Kresge AJ (1990) Kinetics and mechanism of enolization and ketonization. In The Chemistry of Enols (Rappoport Z, ed.), pp. 399480. Wiley, Chichester, UK.
  • 9
    Amyes TL, O'Donoghue AC & Richard JP (2001) Contribution of phosphate intrinsic binding energy to the enzymatic rate acceleration for triosephosphate isomerase. J Am Chem Soc 123, 1132511326.
  • 10
    Knowles JR & Albery WJ (1977) Perfection in enzyme catalysis – energetics of triosephosphate isomerase. Acc Chem Res 10, 105111.
  • 11
    Mulholland AJ & Richards WG (1997) Acetyl-CoA enolization in citrate synthase: a quantum mechanical molecular mechanical (QM/MM) study. Proteins 27, 925.
  • 12
    Mulholland AJ & Karplus M (1996) Simulations of enzymic reactions. Biochem Soc Trans 24, 247254.
  • 13
    Kraut DA, Sigala PA, Pybus B, Liu CW, Ringe D, Petsko GA & Herschlag D (2006) Testing electrostatic complementarity in enzyme catalysis: hydrogen bonding in the ketosteroid isomerase oxyanion hole. PLoS Biol 4, 501519.
  • 14
    Warshel A, Sharma PK, Chu ZT & Aqvist J (2007) Electrostatic contributions to binding of transition state analogues can be very different from the corresponding contributions to catalysis: phenolates binding to the oxyanion hole of ketosteroid isomerase. Biochemistry 46, 14661476.
  • 15
    Kamerlin SCL, Sharma PK, Chu ZT & Warshel A (2010) Ketosteroid isomerase provides further support for the idea that enzymes work by electrostatic preorganization. Proc Natl Acad Sci USA 107, 40754080.
  • 16
    Kraut DA, Sigala PA, Fenn TD & Herschlag D (2010) Dissecting the paradoxical effects of hydrogen bond mutations in the ketosteroid isomerase oxyanion hole. Proc Natl Acad Sci USA 107, 19601965.
  • 17
    Wu ZR, Ebrahimian S, Zawrotny ME, Thornburg LD, PerezAlvarado GC, Brothers P, Pollack RM & Summers MF (1997) Solution structure of 3–oxo-Δ5–steroid isomerase. Science 276, 415418.
  • 18
    Kim SW, Cha SS, Cho HS, Kim JS, Ha HC, Cho MJ, Joo S, Kim KK, Choi KY & Oh BH (1997) High-resolution crystal structures of Δ5–3–ketosteroid isomerase with and without a reaction intermediate analogue. Biochemistry 36, 1403014036.
  • 19
    Pollack RM, Zeng BF, Mack JPG & Eldin S (1989) Determination of the microscopic rate constants for the base-catalyzed conjugation of 5–androstene-3,17–dione. J Am Chem Soc 111, 64196423.
  • 20
    Pollack RM, Thornburg LD, Wu ZR & Summers MF (1999) Mechanistic insights from the three-dimensional structure of 3–oxo-Δ5–steroid isomerase. Arch Biochem Biophys 370, 915.
  • 21
    Kuliopulos A, Mildvan AS, Shortle D & Talalay P (1989) Kinetic and ultraviolet spectroscopic studies of active-site mutants of Δ5–3–ketosteroid isomerase. Biochemistry 28, 149159.
  • 22
    Thornburg LD, Henot F, Bash DP, Hawkinson DC, Bartel SD & Pollack RM (1998) Electrophilic assistance by Asp–99 of 3–oxo-Δ5–steroid isomerase. Biochemistry 37, 1049910506.
  • 23
    Cleland WW & Kreevoy MM (1994) Low-barrier hydrogen bonds and enzymatic catalysis. Science 264, 18871890.
  • 24
    Zhao QJ, Abeygunawardana C, Talalay P & Mildvan AS (1996) NMR evidence for the participation of a low-barrier hydrogen bond in the mechanism of Δ5–3–ketosteroid isomerase. Proc Natl Acad Sci USA 93, 82208224.
  • 25
    Feierberg I & Aqvist J (2002) The catalytic power of ketosteroid isomerase investigated by computer simulation. Biochemistry 41, 1572815735.
  • 26
    Mulholland AJ, Lyne PD & Karplus M (2000) Ab initio QM/MM study of the citrate synthase mechanism. A low-barrier hydrogen bond is not involved. J Am Chem Soc 122, 534535.
  • 27
    Van der Kamp MW, Perruccio F & Mulholland AJ (2007) Ab initio QM/MM modelling of acetyl-CoA deprotonation in the enzyme citrate synthase. J Mol Graph Model 26, 676690.
  • 28
    Cui Q & Karplus M (2002) Quantum mechanical/molecular mechanical studies of the triosephosphate isomerase-catalyzed reaction: verification of methodology and analysis of reaction mechanisms. J Phys Chem B 106, 17681798.
  • 29
    Guallar V, Jacobson M, McDermott A & Friesner RA (2004) Computational modeling of the catalytic reaction in triosephosphate isomerase. J Mol Biol 337, 227239.
  • 30
    Weintraub H, Alfsen A & Baulieu E-E (1970) Δ5–4 3–oxosteroid isomerase. Characteristics of groups implicated in proton transfer. Eur J Biochem 12, 217221 (in French).
  • 31
    Pollack RM, Bantia S, Bounds PL & Koffman BM (1986) pH-dependence of the kinetic-parameters for 3–oxo-Δ5-steroid isomerase – substrate catalysis and inhibition by (3S)-spiro[5–α–androstane-3,2′–oxiran]-17–one. Biochemistry 25, 19051911.
  • 32
    Zhao QJ, Abeygunawardana C, Gittis AG & Mildvan AS (1997) Hydrogen bonding at the active site of Δ5–3–ketosteroid isomerase. Biochemistry 36, 1461614626.
  • 33
    Mildvan AS, Weber DJ & Kuliopulos A (1992) Quantitative interpretations of double mutations of enzymes. Arch Biochem Biophys 294, 327340.
  • 34
    Cho HS, Ha NC, Choi G, Kim HJ, Lee D, Oh KS, Kim KS, Lee W, Choi KY & Oh BH (1999) Crystal structure of Δ5–3–ketosteroid isomerase from Pseudomonas testosteroni in complex with equilenin settles the correct hydrogen bonding scheme for transition state stabilization. J Biol Chem 274, 3286332868.
  • 35
    Park H & Merz KM (2003) Molecular dynamics and quantum chemical studies on the catalytic mechanism of Δ5–3–ketosteroid isomerase: the catalytic diad versus the cooperative hydrogen bond mechanism. J Am Chem Soc 125, 901911.
  • 36
    Mazumder D, Kahn K & Bruice TC (2003) Computational study of ketosteroid isomerase: insights from molecular dynamics simulation of enzyme bound substrate and intermediate. J Am Chem Soc 125, 75537561.
  • 37
    Schwans JP, Kraut DA & Herschlag D (2009) Determining the catalytic role of remote substrate binding interactions in ketosteroid isomerase. Proc Natl Acad Sci USA 106, 1427114275.
  • 38
    Sigala PA, Kraut DA, Caaveiro JMM, Pybus B, Ruben EA, Ringe D, Petsko GA & Herschlag D (2008) Testing geometrical discrimination within an enzyme active site: constrained hydrogen bonding in the ketosterold isomerase oxyanion hole. J Am Chem Soc 130, 1369613708.
  • 39
    Chakravorty DK, Soudackov AV & Hammes-Schiffer S (2009) Hybrid quantum/classical molecular dynamics simulations of the proton transfer reactions catalyzed by ketosteroid isomerase: analysis of hydrogen bonding, conformational motions, and electrostatics. Biochemistry 48, 1060810619.
  • 40
    Grimme S (2003) Improved second-order Moller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies. J Chem Phys 118, 90959102.
  • 41
    Van der Kamp MW, Perruccio F & Mulholland AJ (2007) Substrate polarization in enzyme catalysis: QM/MM analysis of the effect of oxaloacetate polarization on acetyl-CoA enolization in citrate synthase. Proteins 69, 521535.
  • 42
    Mata RA, Werner HJ, Thiel S & Thiel W (2008) Toward accurate barriers for enzymatic reactions: QM/MM case study on p–hydroxybenzoate hydroxylase. J Chem Phys 128, 025104.
  • 43
    Hermann JC, Pradon J, Harvey JN & Mulholland AJ (2009) High level QM/MM modeling of the formation of the tetrahedral intermediate in the acylation of wild-type and K73A mutant TEM–1 class A β–lactamase. J Phys Chem A 113, 1198411994.
  • 44
    Claeyssens F, Harvey JN, Manby FR, Mata RA, Mulholland AJ, Ranaghan KE, Schutz M, Thiel S, Thiel W & Werner HJ (2006) High-accuracy computation of reaction barriers in enzymes. Angew Chem Int Ed 45, 68566859.
  • 45
    Van der Kamp MW, Żurek J, Manby FR, Harvey JN & Mulholland AJ (2010) Testing high-level QM/MM methods for modeling enzyme reactions: acetyl-CoA deprotonation in citrate synthase. J Phys Chem B 114, 1130311314.
  • 46
    Mulholland AJ & Richards WG (1998) Modeling enzyme reaction intermediates and transition states: citrate synthase. J Phys Chem B 102, 66356646.
  • 47
    Eames TCM, Hawkinson DC & Pollack RM (1990) Direct determination of the partitioning of an enzyme-bound intermediate. J Am Chem Soc 112, 19961998.
  • 48
    Hawkinson DC, Pollack RM & Ambulos NP (1994) Evaluation of the internal equilibrium-constant for 3–oxo-Δ5–steroid isomerase using the D38E and D38N mutants – the energetic basis for catalysis. Biochemistry 33, 1217212183.
  • 49
    Zawrotny ME & Pollack RM (1994) Reaction energetics of a mutant 3–oxo-Δ5–steroid isomerase with an altered active-site base (D38E). Biochemistry 33, 1389613902.
  • 50
    Houck WJ & Pollack RM (2004) Temperature effects on the catalytic activity of the D38E mutant of 3–oxo-Δ5–steroid isomerase: favorable enthalpies and entropies of activation relative to the nonenzymatic reaction catalyzed by acetate ion. J Am Chem Soc 126, 1641616425.
  • 51
    Helgaker T, Ruden TA, Jorgensen P, Olsen J & Klopper W (2004) A priori calculation of molecular properties to chemical accuracy. J Phys Org Chem 17, 913933.
  • 52
    Sharma K, Vazquez-Ramirez R & Kubli-Garfias C (2006) At theoretical model of the catalytic mechanism of the Δ5–3–ketosteroid isomerase reaction. Steroids 71, 549557.
  • 53
    Ridder L, Rietjens I, Vervoort J & Mulholland AJ (2002) Quantum mechanical/molecular mechanical free energy simulations of the glutathione S–transferase (M1–1) reaction with phenanthrene 9,10–oxide. J Am Chem Soc 124, 99269936.
  • 54
    Li H, Robertson AD & Jensen JH (2005) Very fast empirical prediction and rationalization of protein pKa values. Proteins 61, 704721.
  • 55
    Bas DC, Rogers DM & Jensen JH (2008) Very fast prediction and rationalization of pKa values for protein–ligand complexes. Proteins 73, 765783.
  • 56
    Hooft RWW, Sander C & Vriend G (1996) Positioning hydrogen atoms by optimizing hydrogen-bond networks in protein structures. Proteins 26, 363376.
  • 57
    Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S & Karplus M (1983) CHARMM – a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4, 187217.
  • 58
    MacKerell AD, Banavali N & Foloppe N (2000) Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56, 257265.
  • 59
    MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S et al. (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102, 35863616.
  • 60
    Pentikainen U, Shaw KE, Senthilkumar K, Woods CJ & Mulholland AJ (2009) Lennard–Jones parameters for B3LYP/CHARMM27 QM/MM modeling of nucleic acid bases. J Chem Theor Comp 5, 396410.
  • 61
    Senthilkumar K, Mujika JI, Ranaghan KE, Manby FR, Mulholland AJ & Harvey JN (2008) Analysis of polarization in QM/MM modelling of biologically relevant hydrogen bonds. J R Soc Interface 5, S207S216.
  • 62
    Brooks CL & Karplus M (1983) Deformable stochastic boundaries in molecular-dynamics. J Chem Phys 79, 63126325.
  • 63
    Brooks CL & Karplus M (1989) Solvent effects on protein motion and protein effects on solvent motion – dynamics of the active-site region of lysozyme. J Mol Biol 208, 159181.
  • 64
    Żurek J, Bowman AL, Sokalski WA & Mulholland AJ (2004) MM and QM/MM modeling of threonyl-tRNA synthetase: model testing and simulations. Struct Chem 15, 405414.
  • 65
    Ryckaert JP, Ciccotti G & Berendsen HJC (1977) Numerical integration of cartesian equations of motion of a system with constraints – molecular dynamics of N–alkanes. J Comput Phys 23, 327341.
  • 66
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW & Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79, 926935.
  • 67
    Field MJ, Bash PA & Karplus M (1990) A combined quantum-mechanical and molecular mechanical potential for molecular-dynamics simulations. J Comput Chem 11, 700733.
  • 68
    Reuter N, Dejaegere A, Maigret B & Karplus M (2000) Frontier bonds in QM/MM methods: a comparison of different approaches. J Phys Chem A 104, 17201735.
  • 69
    Kumar S, Bouzida D, Swendsen RH, Kollman PA & Rosenberg JM (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. 1. The method. J Comput Chem 13, 10111021.
  • 70
    Harvey JN (2004) Spin-forbidden CO ligand recombination in myoglobin. Faraday Discuss 127, 165177.