• 1
    Freyssenet D (2007) Energy sensing and regulation of gene expression in skeletal muscle. J Appl Physiol 102, 529540.
  • 2
    Hawke TJ & Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91, 534551.
  • 3
    McLennan IS (1993) Resident macrophages (ED2- and ED3-positive) do not phagocytose degenerating rat skeletal muscle fibres. Cell Tissue Res 272, 193196.
  • 4
    Honda H, Kimura H & Rostami A (1990) Demonstration and phenotypic characterization of resident macrophages in rat skeletal muscle. Immunology 70, 272277.
  • 5
    Pimorady-Esfahani A, Grounds MD & McMenamin PG (1997) Macrophages and dendritic cells in normal and regenerating murine skeletal muscle. Muscle Nerve 20, 158166.
  • 6
    Przybyla B, Gurley C, Harvey JF, Bearden E, Kortebein P, Evans WJ, Sullivan DH, Peterson CA & Dennis RA (2006) Aging alters macrophage properties in human skeletal muscle both at rest and in response to acute resistance exercise. Exp Gerontol 41, 320327.
  • 7
    Brigitte M, Schilte C, Plonquet A, Baba-Amer Y, Henri A, Charlier C, Tajbakhsh S, Albert M, Gherardi RK & Chretien F (2009) Muscle resident macrophages control the immune cell reaction in a mouse model of notexin-induced myoinjury. Arthritis Rheum 62, 268279.
  • 8
    Seibel HR, Dolwick MF, Bush FM & Craig SS (1978) Electron-microscopic study of the rat masseter muscle following injection of lidocaine. Acta Anat (Basel) 100, 354364.
  • 9
    Yarom R, Behar AJ, Yanko L, Hall TA & Peters PD (1976) Gold tracer studies of muscle regeneration. J Neuropathol Exp Neurol 35, 445457.
  • 10
    McLennan IS (1996) Degenerating and regenerating skeletal muscles contain several subpopulations of macrophages with distinct spatial and temporal distributions. J Anat 188, 1728.
  • 11
    Roth D & Oron U (1985) Repair mechanisms involved in muscle regeneration following partial excision of the rat gastrocnemius muscle. Exp Cell Biol 53, 107114.
  • 12
    Armstrong RB, Ogilvie RW & Schwane JA (1983) Eccentric exercise-induced injury to rat skeletal muscle. J Appl Physiol 54, 8093.
  • 13
    Armstrong RB (1986) Muscle damage and endurance events. Sports Med 3, 370381.
  • 14
    Teixeira CF, Zamuner SR, Zuliani JP, Fernandes CM, Cruz-Hofling MA, Fernandes I, Chaves F & Gutierrez JM (2003) Neutrophils do not contribute to local tissue damage, but play a key role in skeletal muscle regeneration, in mice injected with Bothrops asper snake venom. Muscle Nerve 28, 449459.
  • 15
    Zerria K, Jerbi E, Hammami S, Maaroufi A, Boubaker S, Xiong JP, Arnaout MA & Fathallah DM (2006) Recombinant integrin CD11b A-domain blocks polymorphonuclear cell recruitment and protects against skeletal muscle inflammatory injury in the rat. Immunology 119, 431440.
  • 16
    Pizza FX, Peterson JM, Baas JH & Koh TJ (2005) Neutrophils contribute to muscle injury and impair its resolution after lengthening contractions in mice. J Physiol 562, 899913.
  • 17
    Contreras-Shannon V, Ochoa O, Reyes-Reyna SM, Sun D, Michalek JE, Kuziel WA, McManus LM & Shireman PK (2006) Fat accumulation with altered inflammation and regeneration in skeletal muscle of CCR2–/– mice following ischemic injury. Am J Physiol Cell Physiol 292, C953C967.
  • 18
    Martinez CO, McHale MJ, Wells JT, Ochoa O, Michalek JE, McManus LM & Shireman PK (2010) Regulation of skeletal muscle regeneration by CCR2-activating chemokines is directly related to macrophage recruitment. Am J Physiol Regul Integr Comp Physiol 299, R832R842.
  • 19
    Lu H, Huang D, Ransohoff RM & Zhou L (2011) Acute skeletal muscle injury: CCL2 expression by both monocytes and injured muscle is required for repair. FASEB J 25, 33443355.
  • 20
    Segawa M, Fukada S, Yamamoto Y, Yahagi H, Kanematsu M, Sato M, Ito T, Uezumi A, Hayashi S, Miyagoe-Suzuki Y et al. (2008) Suppression of macrophage functions impairs skeletal muscle regeneration with severe fibrosis. Exp Cell Res 314, 32323244.
  • 21
    Cote CH, Tremblay MH, Duchesne E & Lapoite BM (2008) Inflammation-induced leukocyte accumulation in injured skeletal muscle: role of mast cells. Muscle Nerve 37, 754763.
  • 22
    Chazaud B, Sonnet C, Lafuste P, Bassez G, Rimaniol AC, Poron F, Authier FJ, Dreyfus PA & Gherardi RK (2003) Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. J Cell Biol 163, 11331143.
  • 23
    Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK & Chazaud B (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204, 10711081.
  • 24
    Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, Wu S, Lang R & Iredale JP (2005) Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 115, 5665.
  • 25
    Stoneman V, Braganza D, Figg N, Mercer J, Lang R, Goddard M & Bennett M (2007) Monocyte/macrophage suppression in CD11b diphtheria toxin receptor transgenic mice differentially affects atherogenesis and established plaques. Circ Res 100, 884893.
  • 26
    Summan M, Warren GL, Mercer RR, Chapman R, Hulderman T, van Rooijen N & Simeonova PP (2006) Macrophages and skeletal muscle regeneration: a clodronate-containing liposome depletion study. Am J Physiol Regul Integr Comp Physiol 290, R1488R1495.
  • 27
    Shireman PK, Contreras-Shannon V, Ochoa O, Karia BP, Michalek JE & McManus LM (2007) MCP-1 deficiency causes altered inflammation with impaired skeletal muscle regeneration. J Leukocyte Biol 81, 775785.
  • 28
    Ochoa O, Sun D, Reyes-Reyna SM, Waite LL, Michalek JE, McManus LM & Shireman PK (2007) Delayed angiogenesis and VEGF production in CCR2–/– mice during impaired skeletal muscle regeneration. Am J Physiol Regul Integr Comp Physiol 293, R651R661.
  • 29
    Zhang L, Ran L, Garcia GE, Wang XH, Han S, Du J & Mitch WE (2009) Chemokine CXCL16 regulates neutrophil and macrophage infiltration into injured muscle, promoting muscle regeneration. Am J Pathol 175, 25182527.
  • 30
    Sun D, Martinez CO, Ochoa O, Ruiz-Willhite L, Bonilla JR, Centonze VE, Waite LL, Michalek JE, McManus LM & Shireman PK (2009) Bone marrow-derived cell regulation of skeletal muscle regeneration. FASEB J 23, 382395.
  • 31
    Lluis F, Roma J, Suelves M, Parra M, Aniorte G, Gallardo E, Illa I, Rodriguez L, Hughes SM, Carmeliet P et al. (2001) Urokinase-dependent plasminogen activation is required for efficient skeletal muscle regeneration in vivo. Blood 97, 17031711.
  • 32
    Bryer SC, Fantuzzi G, van Rooijen N & Koh TJ (2008) Urokinase-type plasminogen activator plays essential roles in macrophage chemotaxis and skeletal muscle regeneration. J Immunol 180, 11791188.
  • 33
    Novak ML, Bryer SC, Cheng M, Nguyen MH, Conley KL, Cunningham AK, Xue B, Sisson TH, You JS, Hornberger TA et al. (2011) Macrophage-specific expression of urokinase-type plasminogen activator promotes skeletal muscle regeneration. J Immunol 187, 14481457.
  • 34
    Zhang L, Dong Y, Dong Y, Cheng J & Du J (2012) The role of integrin-beta3 in macrophage polarization and regeneration of injured muscle. J Biol Chem 287, 61776186.
  • 35
    Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A & Littman DR (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20, 41064114.
  • 36
    Geissmann F, Jung S & Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 7182.
  • 37
    Yona S & Jung S (2009) Monocytes: subsets, origins, fates and functions. Curr Opin Hematol 17, 5359.
  • 38
    Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, Sarnacki S, Cumano A, Lauvau G & Geissmann F (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317, 666670.
  • 39
    Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J, Garin A, Liu J, Mack M, van Rooijen N et al. (2007) Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 117, 185194.
  • 40
    Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R & Pittet MJ (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204, 30373047.
  • 41
    Martinez FO, Sica A, Mantovani A & Locati M (2008) Macrophage activation and polarization. Front Biosci 13, 453461.
  • 42
    Mosser DM & Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8, 958969.
  • 43
    Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK & Suttles J (2005) Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 175, 342349.
  • 44
    Biswas SK & Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11, 889896.
  • 45
    Lu H, Huang D, Saederup N, Charo IF, Ransohoff RM & Zhou L (2011) Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. FASEB J 25, 358369.
  • 46
    Perdiguero E, Sousa-Victor P, Ruiz-Bonilla V, Jardi M, Caelles C, Serrano AL & Munoz-Canoves P (2011) p38/MKP-1-regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair. J Cell Biol 195, 307322.
  • 47
    Saclier M, Yacoub-Youssef H, Mackey AL, Arnold L, Ardjoune H, Magnan M, Sailhan F, Chelly J, Pavlath GK, Mounier R et al. (2013) Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration. Stem Cells 31, 384396.
  • 48
    Cantini M, Massimino ML, Bruson A, Catani C, Libera LD & Carraro U (1994) Macrophages regulate proliferation and differentiation of satellite cells. Biochem Biophys Res Commun 202, 16881696.
  • 49
    Sonnet C, Lafuste P, Arnold L, Brigitte M, Poron F, Authier FJ, Chretien F, Gherardi RK & Chazaud B (2006) Human macrophages rescue myoblasts and myotubes from apoptosis through a set of adhesion molecular systems. J Cell Sci 119, 24972507.
  • 50
    Cantini M, Massimino ML, Rapizzi E, Rossini K, Catani C, Dalla Libera L & Carraro U (1995) Human satellite cell proliferation in vitro is regulated by autocrine secretion of IL-6 stimulated by a soluble factor(s) released by activated monocytes. Biochem Biophys Res Commun 216, 4953.
  • 51
    Merly F, Lescaudron L, Rouaud T, Crossin F & Gardahaut MF (1999) Macrophages enhance muscle satellite cell proliferation and delay their differentiation. Muscle Nerve 22, 724732.
  • 52
    Cantini M, Giurisato E, Radu C, Tiozzo S, Pampinella F, Senigaglia D, Zaniolo G, Mazzoleni F & Vitiello L (2002) Macrophage-secreted myogenic factors: a promising tool for greatly enhancing the proliferative capacity of myoblasts in vitro and in vivo. Neurol Sci 23, 189194.
  • 53
    Robertson TA, Maley MAL, Grounds MD & Papadimitriou JM (1993) The role of macrophages in skeletal muscle regeneration with particular reference to chemotaxis. Exp Cell Res 207, 321331.
  • 54
    Serrano AL, Baeza-Raja B, Perdiguero E, Jardi M & Munoz-Canoves P (2008) Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 7, 3344.
  • 55
    Li YP (2003) TNF-{alpha} is a mitogen in skeletal muscle. Am J Physiol Cell Physiol 285, C370C376.
  • 56
    Szalay K, Razga Z & Duda E (1997) TNF inhibits myogenesis and downregulates the expression of myogenic regulatory factors myoD and myogenin. Eur J Cell Biol 74, 391398.
  • 57
    Christov C, Chretien F, Abou-Khalil R, Bassez G, Vallet G, Authier FJ, Bassaglia Y, Shinin V, Tajbakhsh S, Chazaud B et al. (2007) Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell 18, 13971409.
  • 58
    Lescaudron L, Peltekian E, Fontaine-Perus J, Paulin D, Zampieri M, Garcia L & Parrish E (1999) Blood borne macrophages are essential for the triggering of muscle regeneration following muscle transplant. Neuromuscul Disord 9, 7280.
  • 59
    Hamilton TA, Ohmori Y & Tebo J (2002) Regulation of chemokine expression by antiinflammatory cytokines. Immunol Res 25, 229245.
  • 60
    Hara M, Yuasa S, Shimoji K, Onizuka T, Hayashiji N, Ohno Y, Arai T, Hattori F, Kaneda R, Kimura K et al. (2011) G-CSF influences mouse skeletal muscle development and regeneration by stimulating myoblast proliferation. J Exp Med 208, 715727.
  • 61
    Griffin CA, Apponi LH, Long KK & Pavlath GK (2010) Chemokine expression and control of muscle cell migration during myogenesis. J Cell Sci 123, 30523060.
  • 62
    De PB, Schroder JM, Martin JJ, Racz GZ & De Bleecker JL (2004) Localization of the alpha-chemokine SDF-1 and its receptor CXCR4 in idiopathic inflammatory myopathies. Neuromuscul Disord 14, 265273.
  • 63
    Musaro A (2005) Growth factor enhancement of muscle regeneration: a central role of IGF-1. Arch Ital Biol 143, 243248.
  • 64
    Pelosi L, Giacinti C, Nardis C, Borsellino G, Rizzuto E, Nicoletti C, Wannenes F, Battistini L, Rosenthal N, Molinaro M et al. (2007) Local expression of IGF-1 accelerates muscle regeneration by rapidly modulating inflammatory cytokines and chemokines. FASEB J 21, 13931402.
  • 65
    Dumont N & Frenette J (2010) Macrophages protect against muscle atrophyand promote muscle recovery in vivo and in vitro. A mechanism partly dependent on the insulin-like growth factor-1 signaling molecule. Am J Pathol 176, 22282235.
  • 66
    Tacke F, Ginhoux F, Jakubzick C, van Rooijen N, Merad M & Randolph GJ (2006) Immature monocytes acquire antigens from other cells in the bone marrow and present them to T cells after maturing in the periphery. J Exp Med 203, 583597.
  • 67
    Ginhoux F, Tacke F, Angeli V, Bogunovic M, Loubeau M, Dai XM, Stanley ER, Randolph GJ & Merad M (2006) Langerhans cells arise from monocytes in vivo. Nat Immunol 7, 265273.
  • 68
    Kohno S, Ueji T, Abe T, Nakao R, Hirasaka K, Oarada M, Harada-Sukeno A, Ohno A, Higashibata A, Mukai R et al. (2011) Rantes secreted from macrophages disturbs skeletal muscle regeneration after cardiotoxin injection in Cbl-b-deficient mice. Muscle Nerve 43, 223229.
  • 69
    Ruffell D, Mourkioti F, Gambardella A, Kirstetter P, Lopez RG, Rosenthal N & Nerlov C (2009) A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc Natl Acad Sci USA 106, 1747517480.
  • 70
    Cheng M, Nguyen MH, Fantuzzi G & Koh TJ (2008) Endogenous interferon-{gamma} is required for efficient skeletal muscle regeneration. Am J Physiol Cell Physiol 294, C1183C1191.
  • 71
    Deng B, Wehling-Henricks M, Villalta SA, Wang Y & Tidball JG (2012) IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J Immunol 189, 36693680.
  • 72
    Tvede N, Pedersen BK, Hansen FR, Bendix T, Christensen LD, Galbo H & Halkjaer-Kristensen J (1989) Effect of physical exercise on blood mononuclear cell subpopulations and in vitro proliferative responses. Scand J Immunol 29, 383389.
  • 73
    Ullum H, Haahr PM, Diamant M, Palmo J, Halkjaer-Kristensen J & Pedersen BK (1994) Bicycle exercise enhances plasma IL-6 but does not change IL-1 alpha, IL-1 beta, IL-6, or TNF-alpha pre-mRNA in BMNC. J Appl Physiol 77, 9397.
  • 74
    Nielsen HB, Secher NH, Christensen NJ & Pedersen BK (1996) Lymphocytes and NK cell activity during repeated bouts of maximal exercise. Am J Physiol 271, R222R227.
  • 75
    Pizza FX, Davis BH, Henrickson SD, Mitchell JB, Pace JF, Bigelow N, DiLauro P & Naglieri T (1996) Adaptation to eccentric exercise: effect on CD64 and CD11b/CD18 expression. J Appl Physiol 80, 4755.
  • 76
    Smith LL, Bond JA, Holbert D, Houmard JA, Israel RG, McCammon MR & Smith SS (1998) Differential white cell count after two bouts of downhill running. Int J Sports Med 19, 432437.
  • 77
    Paulsen G, Benestad HB, Strom-Gundersen I, Morkrid L, Lappegard KT & Raastad T (2005) Delayed leukocytosis and cytokine response to high-force eccentric exercise. Med Sci Sports Exerc 37, 18771883.
  • 78
    Round JM, Jones DA & Cambridge G (1987) Cellular infiltrates in human skeletal muscle: exercise induced damage as a model for inflammatory muscle disease? J Neurol Sci 82, 111.
  • 79
    Stupka N, Tarnopolsky MA, Yardley NJ & Phillips SM (2001) Cellular adaptation to repeated eccentric exercise-induced muscle damage. J Appl Physiol 91, 16691678.
  • 80
    Peterson JM, Trappe TA, Mylona E, White F, Lambert CP, Evans WJ & Pizza FX (2003) Ibuprofen and acetaminophen: effect on muscle inflammation after eccentric exercise. Med Sci Sports Exerc 35, 892896.
  • 81
    Paulsen G, Crameri R, Benestad HB, Fjeld JG, Morkrid L, Hallen J & Raastad T (2010) Time course of leukocyte accumulation in human muscle after eccentric exercise. Med Sci Sports Exerc 42, 7585.
  • 82
    Harmon BT, Orkunoglu-Suer EF, Adham K, Larkin JS, Gordish-Dressman H, Clarkson PM, Thompson PD, Angelopoulos TJ, Gordon PM, Moyna NM et al. (2010) CCL2 and CCR2 variants are associated with skeletal muscle strength and change in strength with resistance training. J Appl Physiol 109, 17791785.
  • 83
    Hubal MJ, Devaney JM, Hoffman EP, Zambraski EJ, Gordish-Dressman H, Kearns AK, Larkin JS, Adham K, Patel RR & Clarkson PM (2010) CCL2 and CCR2 polymorphisms are associated with markers of exercise-induced skeletal muscle damage. J Appl Physiol 108, 16511658.
  • 84
    Carlson LA, Tighe SW, Kenefick RW, Dragon J, Westcott NW & Leclair RJ (2011) Changes in transcriptional output of human peripheral blood mononuclear cells following resistance exercise. Eur J Appl Physiol 111, 29192929.
  • 85
    Nathan C (2002) Points of control in inflammation. Nature 420, 846852.
  • 86
    Levy BD, Clish CB, Schmidt B, Gronert K & Serhan CN (2001) Lipid mediator class switching during acute inflammation: signals in resolution. Nat Immunol 2, 612619.
  • 87
    Gilroy DW, Colville-Nash PR, Willis D, Chivers J, Paul-Clark MJ & Willoughby DA (1999) Inducible cyclooxygenase may have anti-inflammatory properties. Nat Med 5, 698701.
  • 88
    Mackey AL, Mikkelsen UR, Magnusson SP & Kjaer M (2012) Rehabilitation of muscle after injury – the role of anti-inflammatory drugs. Scand J Med Sci Sports 22, e8e14.
  • 89
    Schoenfeld BJ (2012) The use of nonsteroidal anti-inflammatory drugs for exercise-induced muscle damage: implications for skeletal muscle development. Sports Med 42, 10171028.
  • 90
    Dudley GA, Czerkawski J, Meinrod A, Gillis G, Baldwin A & Scarpone M (1997) Efficacy of naproxen sodium for exercise-induced dysfunction muscle injury and soreness. Clin J Sport Med 7, 310.
  • 91
    Hasson SM, Daniels JC, Divine JG, Niebuhr BR, Richmond S, Stein PG & Williams JH (1993) Effect of ibuprofen use on muscle soreness, damage, and performance: a preliminary investigation. Med Sci Sports Exerc 25, 917.
  • 92
    Lapointe BM, Frenette J & Cote CH (2002) Lengthening contraction-induced inflammation is linked to secondary damage but devoid of neutrophil invasion. J Appl Physiol 92, 19952004.
  • 93
    Bourgeois J, MacDougall D, MacDonald J & Tarnopolsky M (1999) Naproxen does not alter indices of muscle damage in resistance-exercise trained men. Med Sci Sports Exerc 31, 49.
  • 94
    O'Grady M, Hackney AC, Schneider K, Bossen E, Steinberg K, Douglas JM Jr, Murray WJ & Watkins WD (2000) Diclofenac sodium (Voltaren) reduced exercise-induced injury in human skeletal muscle. Med Sci Sports Exerc 32, 11911196.
  • 95
    Sayers SP, Knight CA, Clarkson PM, Van Wegen EH & Kamen G (2001) Effect of ketoprofen on muscle function and sEMG activity after eccentric exercise. Med Sci Sports Exerc 33, 702710.
  • 96
    Cheung EV & Tidball JG (2003) Administration of the non-steroidal anti-inflammatory drug ibuprofen increases macrophage concentrations but reduces necrosis during modified muscle use. Inflamm Res 52, 170176.
  • 97
    Obremsky WT, Seaber AV, Ribbeck BM & Garrett WE Jr (1994) Biomechanical and histologic assessment of a controlled muscle strain injury treated with piroxicam. Am J Sports Med 22, 558561.
  • 98
    Vignaud A, Cebrian J, Martelly I, Caruelle JP & Ferry A (2005) Effect of anti-inflammatory and antioxidant drugs on the long-term repair of severely injured mouse skeletal muscle. Exp Physiol 90, 487495.
  • 99
    Rahusen FT, Weinhold PS & Almekinders LC (2004) Nonsteroidal anti-inflammatory drugs and acetaminophen in the treatment of an acute muscle injury. Am J Sports Med 32, 18561859.
  • 100
    Paulsen G, Egner IM, Drange M, Langberg H, Benestad HB, Fjeld JG, Hallen J & Raastad T (2010) A COX-2 inhibitor reduces muscle soreness, but does not influence recovery and adaptation after eccentric exercise. Scand J Med Sci Sports 20, e195e207.
  • 101
    Tokmakidis SP, Kokkinidis EA, Smilios I & Douda H (2003) The effects of ibuprofen on delayed muscle soreness and muscular performance after eccentric exercise. J Strength Cond Res 17, 5359.
  • 102
    Almekinders LC (1999) Anti-inflammatory treatment of muscular injuries in sport. An update of recent studies. Sports Med 28, 383388.
  • 103
    Shen W, Li Y, Tang Y, Cummins J & Huard J (2005) NS-398, a cyclooxygenase-2-specific inhibitor, delays skeletal muscle healing by decreasing regeneration and promoting fibrosis. Am J Pathol 167, 11051117.
  • 104
    Shen W, Prisk V, Li Y, Foster W & Huard J (2006) Inhibited skeletal muscle healing in cyclooxygenase-2 gene-deficient mice: the role of PGE2 and PGF2alpha. J Appl Physiol 101, 12151221.
  • 105
    Bondesen BA, Mills ST, Kegley KM & Pavlath GK (2004) The COX-2 pathway is essential during early stages of skeletal muscle regeneration. Am J Physiol Cell Physiol 287, C475C483.
  • 106
    Mishra DK, Friden J, Schmitz MC & Lieber RL (1995) Anti-inflammatory medication after muscle injury. A treatment resulting in short-term improvement but subsequent loss of muscle function. J Bone Joint Surg Am 77, 15101519.
  • 107
    Takagi R, Fujita N, Arakawa T, Kawada S, Ishii N & Miki A (2011) Influence of icing on muscle regeneration after crush injury to skeletal muscles in rats. J Appl Physiol 110, 382388.
  • 108
    Mackey AL, Kjaer M, Dandanell S, Mikkelsen KH, Holm L, Dossing S, Kadi F, Koskinen SO, Jensen CH, Schroder HD et al. (2007) The influence of anti-inflammatory medication on exercise-induced myogenic precursor cell responses in humans. J Appl Physiol 103, 425431.
  • 109
    Mikkelsen UR, Schjerling P, Helmark IC, Reitelseder S, Holm L, Skovgaard D, Langberg H, Kjaer M & Heinemeier KM (2011) Local NSAID infusion does not affect protein synthesis and gene expression in human muscle after eccentric exercise. Scand J Med Sci Sports 21, 630644.
  • 110
    Nucera S, Biziato D & De Palma M (2011) The interplay between macrophages and angiogenesis in development, tissue injury and regeneration. Int J Dev Biol 55, 495503.
  • 111
    Wynn TA & Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18, 10281040.