SEARCH

SEARCH BY CITATION

References

  • 1
    Barash U, Cohen-Kaplan V, Dowek I, Sanderson RD, Ilan N & Vlodavsky I (2010) Proteoglycans in health and disease: new concepts for heparanase function in tumor progression and metastasis. FEBS J 277, 38903903.
  • 2
    Arvatz G, Shafat I, Levy-Adam F, Ilan N & Vlodavsky I (2011) The heparanase system and tumor metastasis: is heparanase the seed and soil? Cancer Metastasis Rev 30, 253268.
  • 3
    Vlodavsky I, Elkin M, Abboud-Jarrous G, Levi-Adam F, Fuks L, Shafat I & Ilan N (2008) Heparanase: one molecule with multiple functions in cancer progression. Connect Tissue Res 49, 207210.
  • 4
    Ilan N, Elkin M & Vlodavsky I (2006) Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 38, 20182039.
  • 5
    Purushothaman A, Babitz SK & Sanderson RD (2012) Heparanase enhances the insulin receptor signaling pathway to activate ERK in multiple myeloma. J Biol Chem 287, 4128841296.
  • 6
    Purushothaman A, Chen L, Yang Y & Sanderson RD (2008) Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma. J Biol Chem 283, 3262832636.
  • 7
    Ridgway LD, Wetzel MD & Marchetti D (2011) Heparanase modulates Shh and Wnt3a signaling in human medulloblastoma cells. Exp Ther Med 2, 229238.
  • 8
    Ridgway LD, Wetzel MD, Ngo JA, Erdreich-Epstein A & Marchetti D (2012) Heparanase-induced GEF-H1 signaling regulates the cytoskeletal dynamics of brain metastatic breast cancer cells. Mol Cancer Res 10, 689702.
  • 9
    Ma P, Beck SL, Raab RW, McKown RL, Coffman GL, Utani A, Chirico WJ, Rapraeger AC & Laurie GW (2006) Heparanase deglycanation of syndecan-1 is required for binding of the epithelial-restricted prosecretory mitogen lacritin. J Cell Biol 174, 10971106.
  • 10
    Neuss S, Becher E, Woltje M, Tietze L & Jahnen-Dechent W (2004) Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells 22, 405414.
  • 11
    Nakamura T, Sakai K & Matsumoto K (2011) Hepatocyte growth factor twenty years on: much more than a growth factor. J Gastroenterol Hepatol 26, 188202.
  • 12
    Birchmeier C, Birchmeier W, Gherardi E & Vande Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4, 915925.
  • 13
    You WK & McDonald DM (2008) The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis. BMB Rep 41, 833839.
  • 14
    Lesko E & Majka M (2008) The biological role of HGF-MET axis in tumor growth and development of metastasis. Front Biosci 13, 12711280.
  • 15
    Borset M, Hjorth-Hansen H, Seidel C, Sundan A & Waage A (1996) Hepatocyte growth factor and its receptor c-met in multiple myeloma. Blood 88, 39984004.
  • 16
    Zhan F, Hardin J, Kordsmeier B, Bumm K, Zheng M, Tian E, Sanderson R, Yang Y, Wilson C, Zangari M et al. (2002) Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 99, 17451757.
  • 17
    Derksen PW, de Gorter DJ, Meijer HP, Bende RJ, van Dijk M, Lokhorst HM, Bloem AC, Spaargaren M & Pals ST (2003) The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma. Leukemia 17, 764774.
  • 18
    Holt RU, Baykov V, Ro TB, Brabrand S, Waage A, Sundan A & Borset M (2005) Human myeloma cells adhere to fibronectin in response to hepatocyte growth factor. Haematologica 90, 479488.
  • 19
    Hjertner O, Torgersen ML, Seidel C, Hjorth-Hansen H, Waage A, Borset M & Sundan A (1999) Hepatocyte growth factor (HGF) induces interleukin-11 secretion from osteoblasts: a possible role for HGF in myeloma-associated osteolytic bone disease. Blood 94, 38833888.
  • 20
    Seidel C, Borset M, Turesson I, Abildgaard N, Sundan A & Waage A (1998) Elevated serum concentrations of hepatocyte growth factor in patients with multiple myeloma. The Nordic Myeloma Study Group. Blood 91, 806812.
  • 21
    Ramani VC, Yang Y, Ren Y, Nan L & Sanderson RD (2011) Heparanase plays a dual role in driving hepatocyte growth factor (HGF) signaling by enhancing HGF expression and activity. J Biol Chem 286, 64906499.
  • 22
    Derksen PW, Keehnen RM, Evers LM, van Oers MH, Spaargaren M & Pals ST (2002) Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma. Blood 99, 14051410.
  • 23
    Deakin JA & Lyon M (1999) Differential regulation of hepatocyte growth factor/scatter factor by cell surface proteoglycans and free glycosaminoglycan chains. J Cell Sci 112, 19992009.
  • 24
    Seidel C, Borset M, Hjertner O, Cao D, Abildgaard N, Hjorth-Hansen H, Sanderson RD, Waage A & Sundan A (2000) High levels of soluble syndecan-1 in myeloma-derived bone marrow: modulation of hepatocyte growth factor activity. Blood 96, 31393146.
  • 25
    Cohen-Kaplan V, Naroditsky I, Zetser A, Ilan N, Vlodavsky I & Doweck I (2008) Heparanase induces VEGF C and facilitates tumor lymphangiogenesis. Int J Cancer 123, 25662573.
  • 26
    Purushothaman A, Uyama T, Kobayashi F, Yamada S, Sugahara K, Rapraeger AC & Sanderson RD (2010) Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood 115, 24492457.
  • 27
    Brooks PC, Clark RA & Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264, 569571.
  • 28
    Mahabeleshwar GH, Feng W, Reddy K, Plow EF & Byzova TV (2007) Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis. Circ Res 101, 570580.
  • 29
    Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J & Zako M (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68, 729777.
  • 30
    Fitzgerald ML, Wang Z, Park PW, Murphy G & Bernfield M (2000) Shedding of syndecan-1 and -4 ectodomains is regulated by multiple signaling pathways and mediated by a TIMP-3-sensitive metalloproteinase. J Cell Biol 148, 811824.
  • 31
    Manon-Jensen T, Itoh Y & Couchman JR (2010) Proteoglycans in health and disease: the multiple roles of syndecan shedding. FEBS J 277, 38763889.
  • 32
    Bayer-Garner IB, Sanderson RD, Dhodapkar MV, Owens RB & Wilson CS (2001) Syndecan-1 (CD138) immunoreactivity in bone marrow biopsies of multiple myeloma: shed syndecan-1 accumulates in fibrotic regions. Mod Pathol 14, 10521058.
  • 33
    Hayashida K, Bartlett AH, Chen Y & Park PW (2010) Molecular and cellular mechanisms of ectodomain shedding. Anat Rec 293, 925937.
  • 34
    Reiland J, Ott VL, Lebakken CS, Yeaman C, McCarthy J & Rapraeger AC (1996) Pervanadate activation of intracellular kinases leads to tyrosine phosphorylation and shedding of syndecan-1. Biochem J 319, 3947.
  • 35
    Hayashida K, Stahl PD & Park PW (2008) Syndecan-1 ectodomain shedding is regulated by the small GTPase Rab5. J Biol Chem 283, 3543535444.
  • 36
    Ramani VC, Pruett PS, Thompson CA, DeLucas LD & Sanderson RD (2012) Heparan sulfate chains of syndecan-1 regulate ectodomain shedding. J Biol Chem 287, 99529961.
  • 37
    Yang Y, Macleod V, Miao HQ, Theus A, Zhan F, Shaughnessy JD Jr, Sawyer J, Li JP, Zcharia E, Vlodavsky I et al. (2007) Heparanase enhances syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis. J Biol Chem 282, 1332613333.
  • 38
    Sanderson RD & Couchman JR (2012) Targeting syndecan shedding in cancer. In Extracellular Matrix: Pathobiology and Signaling (Karamanos NK, ed.), pp. 802812. De Gruyter, Berlin, Germany.
  • 39
    Choi S, Lee H, Choi JR & Oh ES (2010) Shedding; towards a new paradigm of syndecan function in cancer. BMB Rep 43, 305310.
  • 40
    Joensuu H, Anttonen A, Eriksson M, Makitaro R, Alfthan H, Kinnula V & Leppa S (2002) Soluble syndecan-1 and serum basic fibroblast growth factor are new prognostic factors in lung cancer. Cancer Res 62, 52105217.
  • 41
    Vassilakopoulos TP, Kyrtsonis MC, Papadogiannis A, Nadali G, Angelopoulou MK, Tzenou T, Dimopoulou MN, Siakantaris MP, Kontopidou FN, Kalpadakis C et al. (2005) Serum levels of soluble syndecan-1 in Hodgkin's lymphoma. Anticancer Res 25, 47434746.
  • 42
    Dhodapkar MV, Kelly T, Theus A, Athota AB, Barlogie B & Sanderson RD (1997) Elevated levels of shed syndecan-1 correlate with tumour mass and decreased matrix metalloproteinase-9 activity in the serum of patients with multiple myeloma. Br J Haematol 99, 368371.
  • 43
    Seidel C, Sundan A, Hjorth M, Turesson I, Dahl IM, Abildgaard N, Waage A & Borset M (2000) Serum syndecan-1: a new independent prognostic marker in multiple myeloma. Blood 95, 388392.
  • 44
    Lovell R, Dunn JA, Begum G, Barth NJ, Plant T, Moss PA, Drayson MT & Pratt G (2005) Soluble syndecan-1 level at diagnosis is an independent prognostic factor in multiple myeloma and the extent of fall from diagnosis to plateau predicts for overall survival. Br J Haematol 130, 542548.
  • 45
    Dhodapkar MV, Abe E, Theus A, Lacy M, Langford JK, Barlogie B & Sanderson RD (1998) Syndecan-1 is a multifunctional regulator of myeloma pathobiology: control of tumor cell survival, growth, and bone cell differentiation. Blood 91, 26792688.
  • 46
    Su G, Blaine SA, Qiao D & Friedl A (2008) Membrane type 1 matrix metalloproteinase-mediated stromal syndecan-1 shedding stimulates breast carcinoma cell proliferation. Cancer Res 68, 95589565.
  • 47
    Stanley MJ, Stanley MW, Sanderson RD & Zera R (1999) Syndecan-1 expression is induced in the stroma of infiltrating breast carcinoma. Am J Clin Pathol 112, 377383.
  • 48
    Su G, Blaine SA, Qiao D & Friedl A (2007) Shedding of syndecan-1 by stromal fibroblasts stimulates human breast cancer cell proliferation via FGF2 activation. J Biol Chem 282, 1490614915.
  • 49
    Nikolova V, Koo CY, Ibrahim SA, Wang Z, Spillmann D, Dreier R, Kelsch R, Fischgrabe J, Smollich M, Rossi LH et al. (2009) Differential roles for membrane-bound and soluble syndecan-1 (CD138) in breast cancer progression. Carcinogenesis 30, 397407.
  • 50
    Aragao AZ, Belloni M, Simabuco FM, Zanetti MR, Yokoo S, Domingues RR, Kawahara R, Pauletti BA, Goncalves A, Agostini M et al. (2012) Novel processed form of syndecan-1 shed from SCC-9 cells plays a role in cell migration. PLoS One 7, e43521.
  • 51
    Yang Y, Yaccoby S, Liu W, Langford JK, Pumphrey CY, Theus A, Epstein J & Sanderson RD (2002) Soluble syndecan-1 promotes growth of myeloma tumors in vivo. Blood 100, 610617.
  • 52
    Mahtouk K, Hose D, Raynaud P, Hundemer M, Jourdan M, Jourdan E, Pantesco V, Baudard M, De Vos J, Larroque M et al. (2007) Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma. Blood 109, 49144923.
  • 53
    Sotnikov I, Hershkoviz R, Grabovsky V, Ilan N, Cahalon L, Vlodavsky I, Alon R & Lider O (2004) Enzymatically quiescent heparanase augments T cell interactions with VCAM-1 and extracellular matrix components under versatile dynamic contexts. J Immunol 172, 51855193.
  • 54
    Levy-Adam F, Feld S, Suss-Toby E, Vlodavsky I & Ilan N (2008) Heparanase facilitates cell adhesion and spreading by clustering of cell surface heparan sulfate proteoglycans. PLoS One 3, e2319.
  • 55
    Reiland J, Kempf D, Roy M, Denkins Y & Marchetti D (2006) FGF2 binding, signaling, and angiogenesis are modulated by heparanase in metastatic melanoma cells. Neoplasia 8, 596606.
  • 56
    Kato M, Wang H, Kainulainen V, Fitzgerald ML, Ledbetter S, Ornitz DM & Bernfield M (1998) Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nat Med 4, 691697.
  • 57
    Liu D, Shriver Z, Venkataraman G, El Shabrawi Y & Sasisekharan R (2002) Tumor cell surface heparan sulfate as cryptic promoters or inhibitors of tumor growth and metastasis. Proc Natl Acad Sci USA 99, 568573.
  • 58
    Masola V, Gambaro G, Tibaldi E, Brunati AM, Gastaldello A, D'Angelo A, Onisto M & Lupo A (2012) Heparanase and syndecan-1 interplay orchestrates fibroblast growth factor-2-induced epithelial-mesenchymal transition in renal tubular cells. J Biol Chem 287, 14781488.
  • 59
    Yang Y, Borset M, Langford JK & Sanderson RD (2003) Heparan sulfate regulates targeting of syndecan-1 to a functional domain on the cell surface. J Biol Chem 278, 1288812893.
  • 60
    Mertens G, Van der Schueren B, van den Berghe H & David G (1996) Heparan sulfate expression in polarized epithelial cells: the apical sorting of glypican (GPI-anchored proteoglycan) is inversely related to its heparan sulfate content. J Cell Biol 132, 487497.
  • 61
    Schubert SY, Ilan N, Shushy M, Ben-Izhak O, Vlodavsky I & Goldshmidt O (2004) Human heparanase nuclear localization and enzymatic activity. Lab Invest 84, 535544.
  • 62
    Kobayashi M, Naomoto Y, Nobuhisa T, Okawa T, Takaoka M, Shirakawa Y, Yamatsuji T, Matsuoka J, Mizushima T, Matsuura H et al. (2006) Heparanase regulates esophageal keratinocyte differentiation through nuclear translocation and heparan sulfate cleavage. Differentiation 74, 235243.
  • 63
    Zhang L, Sullivan P, Suyama J & Marchetti D (2010) Epidermal growth factor-induced heparanase nucleolar localization augments DNA topoisomerase I activity in brain metastatic breast cancer. Mol Cancer Res 8, 278290.
  • 64
    He YQ, Sutcliffe EL, Bunting KL, Li J, Goodall KJ, Poon IK, Hulett MD, Freeman C, Zafar A, McInnes RL et al. (2012) The endoglycosidase heparanase enters the nucleus of T lymphocytes and modulates H3 methylation at actively transcribed genes via the interplay with key chromatin modifying enzymes. Transcription 3, 130145.
  • 65
    Doweck I, Kaplan-Cohen V, Naroditsky I, Sabo E, Ilan N & Vlodavsky I (2006) Heparanase localization and expression by head and neck cancer: correlation with tumor progression and patient survival. Neoplasia 8, 10551061.
  • 66
    Ohkawa T, Naomoto Y, Takaoka M, Nobuhisa T, Noma K, Motoki T, Murata T, Uetsuka H, Kobayashi M, Shirakawa Y et al. (2004) Localization of heparanase in esophageal cancer cells: respective roles in prognosis and differentiation. Lab Invest 84, 12891304.
  • 67
    Takaoka M, Naomoto Y, Ohkawa T, Uetsuka H, Shirakawa Y, Uno F, Fujiwara T, Gunduz M, Nagatsuka H, Nakajima M et al. (2003) Heparanase expression correlates with invasion and poor prognosis in gastric cancers. Lab Invest 83, 613622.
  • 68
    Ishihara M, Fedarko NS & Conrad HE (1986) Transport of heparan sulfate into the nuclei of hepatocytes. J Biol Chem 261, 1357513580.
  • 69
    Richardson TP, Trinkaus-Randall V & Nugent MA (2001) Regulation of heparan sulfate proteoglycan nuclear localization by fibronectin. J Cell Sci 114, 16131623.
  • 70
    Brockstedt U, Dobra K, Nurminen M & Hjerpe A (2002) Immunoreactivity to cell surface syndecans in cytoplasm and nucleus: tubulin-dependent rearrangements. Exp Cell Res 274, 235245.
  • 71
    Hsia E, Richardson TP & Nugent MA (2003) Nuclear localization of basic fibroblast growth factor is mediated by heparan sulfate proteoglycans through protein kinase C signaling. J Cell Biochem 88, 12141225.
  • 72
    Buczek-Thomas JA, Hsia E, Rich CB, Foster JA & Nugent MA (2008) Inhibition of histone acetyltransferase by glycosaminoglycans. J Cell Biochem 105, 108120.
  • 73
    Nilsson U, Johnsson R, Fransson LA, Ellervik U & Mani K (2010) Attenuation of tumor growth by formation of antiproliferative glycosaminoglycans correlates with low acetylation of histone H3. Cancer Res 70, 37713779.
  • 74
    Chen L & Sanderson RD (2009) Heparanase regulates levels of syndecan-1 in the nucleus. PLoS One 4, e4947.
  • 75
    Tumova S, Hatch BA, Law DJ & Bame KJ (1999) Basic fibroblast growth factor does not prevent heparan sulphate proteoglycan catabolism in intact cells, but it alters the distribution of the glycosaminoglycan degradation products. Biochem J 337, 471481.
  • 76
    Zong F, Fthenou E, Wolmer N, Hollosi P, Kovalszky I, Szilak L, Mogler C, Nilsonne G, Tzanakakis G & Dobra K (2009) Syndecan-1 and FGF-2, but not FGF receptor-1, share a common transport route and co-localize with heparanase in the nuclei of mesenchymal tumor cells. PLoS One 4, e7346.
  • 77
    Purushothaman A, Hurst DR, Pisano C, Mizumoto S, Sugahara K & Sanderson RD (2011) Heparanase-mediated loss of nuclear syndecan-1 enhances histone acetyltransferase (HAT) activity to promote expression of genes that drive an aggressive tumor phenotype. J Biol Chem 286, 3037730383.
  • 78
    Record M, Subra C, Silvente-Poirot S & Poirot M (2011) Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol 81, 11711182.
  • 79
    Ge R, Tan E, Sharghi-Namini S & Asada HH (2012) Exosomes in cancer microenvironment and beyond: have we overlooked these extracellular messengers? Cancer Microenviron 5, 323332.
  • 80
    Bobrie A, Colombo M, Raposo G & Thery C (2011) Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 12, 16591668.
  • 81
    Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J & Ratajczak MZ (2005) Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 113, 752760.
  • 82
    Peinado H, Lavotshkin S & Lyden D (2011) The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol 21, 139146.
  • 83
    Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar C et al. (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18, 883891.
  • 84
    Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, Ivarsson Y, Depoortere F, Coomans C, Vermeiren E et al. (2012) Syndecan–syntenin–ALIX regulates the biogenesis of exosomes. Nat Cell Biol 14, 677685.
  • 85
    Keller S, Konig AK, Marme F, Runz S, Wolterink S, Koensgen D, Mustea A, Sehouli J & Altevogt P (2009) Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Lett 278, 7381.
  • 86
    Casu B, Vlodavsky I & Sanderson RD (2008) Non-anticoagulant heparins and inhibition of cancer. Pathophysiol Haemost Thromb 36, 195203.
  • 87
    Coombe DR & Kett WC (2012) Heparin mimetics. Handb Exp Pharmacol 207, 361383.
  • 88
    Cochran S, Li C, Fairweather JK, Kett WC, Coombe DR & Ferro V (2003) Probing the interactions of phosphosulfomannans with angiogenic growth factors by surface plasmon resonance. J Med Chem 46, 46014608.
  • 89
    Liu CJ, Lee PH, Lin DY, Wu CC, Jeng LB, Lin PW, Mok KT, Lee WC, Yeh HZ, Ho MC et al. (2009) Heparanase inhibitor PI-88 as adjuvant therapy for hepatocellular carcinoma after curative resection: a randomized phase II trial for safety and optimal dosage. J Hepatol 50, 958968.
  • 90
    Dredge K, Hammond E, Handley P, Gonda TJ, Smith MT, Vincent C, Brandt R, Ferro V & Bytheway I (2011) PG545, a dual heparanase and angiogenesis inhibitor, induces potent anti-tumour and anti-metastatic efficacy in preclinical models. Br J Cancer 104, 635642.
  • 91
    Ferro V, Liu L, Johnstone KD, Wimmer N, Karoli T, Handley P, Rowley J, Dredge K, Li CP, Hammond E et al. (2012) Discovery of PG545: a highly potent and simultaneous inhibitor of angiogenesis, tumor growth, and metastasis. J Med Chem 55, 38043813.
  • 92
    Hammond E, Brandt R & Dredge K (2012) PG545, a heparan sulfate mimetic, reduces heparanase expression in vivo, blocks spontaneous metastases and enhances overall survival in the 4T1 breast carcinoma model. PLoS One 7, e52175.
  • 93
    Naggi A, Casu B, Perez M, Torri G, Cassinelli G, Penco S, Pisano C, Giannini G, Ishai-Michaeli R & Vlodavsky I (2005) Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. J Biol Chem 280, 1210312113.
  • 94
    Shafat I, Ben-Arush MW, Issakov J, Meller I, Naroditsky I, Tortoteto M, Cassinelli G, Lanzi C, Pisano C, Ilan N et al. (2011) Preclinical and clinical significance of heparanase in Ewing's sarcoma. J Cell Mol Med 15, 18571864.
  • 95
    Yang Y, MacLeod V, Dai Y, Khotskaya-Sample Y, Shriver Z, Venkataraman G, Sasisekharan R, Naggi A, Torri G, Casu B et al. (2007) The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood 110, 20412048.
  • 96
    Ritchie JP, Ramani VC, Ren Y, Naggi A, Torri G, Casu B, Penco S, Pisano C, Carminati P, Tortoreto M et al. (2011) SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clin Cancer Res 17, 13821393.
  • 97
    Meirovitz A, Hermano E, Lerner I, Zcharia E, Pisano C, Peretz T & Elkin M (2011) Role of heparanase in radiation-enhanced invasiveness of pancreatic carcinoma. Cancer Res 71, 27722780.
  • 98
    Zhou H, Roy S, Cochran E, Zouaoui R, Chu CL, Duffner J, Zhao G, Smith S, Galcheva-Gargova Z, Karlgren J et al. (2011) M402, a novel heparan sulfate mimetic, targets multiple pathways implicated in tumor progression and metastasis. PLoS One 6, e21106.
  • 99
    Schmidt EP, Yang Y, Janssen WJ, Gandjeva A, Perez MJ, Barthel L, Zemans RL, Bowman JC, Koyanagi DE, Yunt ZX et al. (2012) The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med 18, 12171223.
  • 100
    Ziolkowski AF, Popp SK, Freeman C, Parish CR & Simeonovic CJ (2012) Heparan sulfate and heparanase play key roles in mouse beta cell survival and autoimmune diabetes. J Clin Invest 122, 132141.
  • 101
    Gil N, Goldberg R, Neuman T, Garsen M, Zcharia E, Rubinstein AM, van Kuppevelt T, Meirovitz A, Pisano C, Li JP et al. (2012) Heparanase is essential for the development of diabetic nephropathy in mice. Diabetes 61, 208216.
  • 102
    Tsuzuki Y, Nguyen TK, Garud DR, Kuberan B & Koketsu M (2010) 4-deoxy-4-fluoro-xyloside derivatives as inhibitors of glycosaminoglycan biosynthesis. Bioorg Med Chem Lett 20, 72697273.
  • 103
    Fritz TA, Lugemwa FN, Sarkar AK & Esko JD (1994) Biosynthesis of heparan sulfate on ß-D-xylosides depends on aglycone structure. J Biol Chem 269, 300307.
  • 104
    Beauvais DM, Ell BJ, McWhorter AR & Rapraeger AC (2009) Syndecan-1 regulates alphavbeta3 and alphavbeta5 integrin activation during angiogenesis and is blocked by synstatin, a novel peptide inhibitor. J Exp Med 206, 691705.
  • 105
    Beauvais DM & Rapraeger AC (2010) Syndecan-1 couples the insulin-like growth factor-1 receptor to inside-out integrin activation. J Cell Sci 123, 37963807.
  • 106
    Zhang L, Sullivan PS, Goodman JC, Gunaratne PH & Marchetti D (2011) MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase. Cancer Res 71, 645654.
  • 107
    Welton JL, Khanna S, Giles PJ, Brennan P, Brewis IA, Staffurth J, Mason MD & Clayton A (2010) Proteomics analysis of bladder cancer exosomes. Mol Cell Proteomics 9, 13241338.
  • 108
    Choi DS, Lee JM, Park GW, Lim HW, Bang JY, Kim YK, Kwon KH, Kwon HJ, Kim KP & Gho YS (2007) Proteomic analysis of microvesicles derived from human colorectal cancer cells. J Proteome Res 6, 46464655.
  • 109
    Gonzales PA, Pisitkun T, Hoffert JD, Tchapyjnikov D, Star RA, Kleta R, Wang NS & Knepper MA (2009) Large-scale proteomics and phosphoproteomics of urinary exosomes. J Am Soc Nephrol 20, 363379.
  • 110
    Mathivanan S, Lim JW, Tauro BJ, Ji H, Moritz RL & Simpson RJ (2010) Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics 9, 197208.
  • 111
    Gonzalez-Begne M, Lu B, Han X, Hagen FK, Hand AR, Melvin JE & Yates JR (2009) Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J Proteome Res 8, 13041314.
  • 112
    Carayon K, Chaoui K, Ronzier E, Lazar I, Bertrand-Michel J, Roques V, Balor S, Terce F, Lopez A, Salome L et al. (2011) Proteolipidic composition of exosomes changes during reticulocyte maturation. J Biol Chem 286, 3442634439.
  • 113
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ & Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9, 654659.
  • 114
    Ji H, Erfani N, Tauro BJ, Kapp EA, Zhu HJ, Moritz RL, Lim JW & Simpson RJ (2008) Difference gel electrophoresis analysis of Ras-transformed fibroblast cell-derived exosomes. Electrophoresis 29, 26602671.
  • 115
    Thompson CA, Purushothaman A, Ramani VC, Vlodavsky I & Sanderson RD (2013) Heparanase regulates secretion, composition and function of tumor cell-derived exosomes. J Biol Chem, doi:10.1074/jbc.C112.444562.