• 1
    Ponka P & Lok CN (1999) The transferrin receptor: role in health and disease. Int J Biochem Cell Biol 31, 11111137.
  • 2
    Fuchs H, Lucken U, Tauber R, Engel A & Gessner R (1998) Structural model of phospholipid-reconstituted human transferrin receptor derived by electron microscopy. Structure 6, 12351243.
  • 3
    Shih YJ, Baynes RD, Hudson BG, Flowers CH, Skikne BS & Cook JD (1990) Serum transferrin receptor is a truncated form of tissue receptor. J Biol Chem 265, 1907719081.
  • 4
    Kaup M, Dassler K, Weise C & Fuchs H (2002) Shedding of the transferrin receptor is mediated constitutively by an integral membrane metalloprotease sensitive to tumor necrosis factor alpha protease inhibitor-2. J Biol Chem 277, 3849438502.
  • 5
    Fuchs H & Dassler K (2008) Generation and function of soluble transferrin receptor 1. In Iron Metabolism and Disease (Fuchs H, ed.), pp. 125150. Research Signpost, Trivandrum.
  • 6
    Dai J, Li J, Bos E, Porcionatto M, Premont RT, Bourgoin S, Peters PJ & Hsu VW (2004) ACAP1 promotes endocytic recycling by recognizing recycling sorting signals. Dev Cell 7, 771776.
  • 7
    Geminard C, Nault F, Johnstone RM & Vidal M (2001) Characteristics of the interaction between Hsc70 and the transferrin receptor in exosomes released during reticulocyte maturation. J Biol Chem 276, 99109916.
  • 8
    Green F, O'Hare T, Blackwell A & Enns CA (2002) Association of human transferrin receptor with GABARAP. FEBS Lett 518, 101106.
  • 9
    Nesterov A, Carter RE, Sorkina T, Gill GN & Sorkin A (1999) Inhibition of the receptor-binding function of clathrin adaptor protein AP-2 by dominant-negative mutant mu2 subunit and its effects on endocytosis. EMBO J 18, 24892499.
  • 10
    Tosoni D, Puri C, Confalonieri S, Salcini AE, De Camilli P, Tacchetti C & Di Fiore PP (2005) TTP specifically regulates the internalization of the transferrin receptor. Cell 123, 875888.
  • 11
    Sakai J, Duncan EA, Rawson RB, Hua X, Brown MS & Goldstein JL (1996) Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell 85, 10371046.
  • 12
    Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, Brown MS & Goldstein JL (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6, 13551364.
  • 13
    Selkoe DJ (1999) Translating cell biology into therapeutic advances in Alzheimer's disease. Nature 399, A2331.
  • 14
    Schroeter EH, Kisslinger JA & Kopan R (1998) Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382386.
  • 15
    Rio C, Buxbaum JD, Peschon JJ & Corfas G (2000) Tumor necrosis factor-alpha-converting enzyme is required for cleavage of erbB4/HER4. J Biol Chem 275, 1037910387.
  • 16
    Urban S, Lee JR & Freeman M (2001) Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107, 173182.
  • 17
    Lee JR, Urban S, Garvey CF & Freeman M (2001) Regulated intracellular ligand transport and proteolysis control EGF signal activation in Drosophila. Cell 107, 161171.
  • 18
    Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT & Selkoe DJ (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398, 513517.
  • 19
    Struhl G & Greenwald I (1999) Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398, 522525.
  • 20
    Weihofen A, Binns K, Lemberg MK, Ashman K & Martoglio B (2002) Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science 296, 22152218.
  • 21
    Weihofen A & Martoglio B (2003) Intramembrane-cleaving proteases: controlled liberation of proteins and bioactive peptides. Trends Cell Biol 13, 7178.
  • 22
    Friedmann E, Hauben E, Maylandt K, Schleeger S, Vreugde S, Lichtenthaler SF, Kuhn PH, Stauffer D, Rovelli G & Martoglio B (2006) SPPL2a and SPPL2b promote intramembrane proteolysis of TNFalpha in activated dendritic cells to trigger IL-12 production. Nat Cell Biol 8, 843848.
  • 23
    Fluhrer R, Grammer G, Israel L, Condron MM, Haffner C, Friedmann E, Bohland C, Imhof A, Martoglio B, Teplow DB et al. (2006) A gamma-secretase-like intramembrane cleavage of TNFalpha by the GxGD aspartyl protease SPPL2b. Nat Cell Biol 8, 894896.
  • 24
    Martin L, Fluhrer R, Reiss K, Kremmer E, Saftig P & Haass C (2008) Regulated intramembrane proteolysis of Bri2 (Itm2b) by ADAM10 and SPPL2a/SPPL2b. J Biol Chem 283, 16441652.
  • 25
    Kirkin V, Cahuzac N, Guardiola-Serrano F, Huault S, Luckerath K, Friedmann E, Novac N, Wels WS, Martoglio B, Hueber AO et al. (2007) The Fas ligand intracellular domain is released by ADAM10 and SPPL2a cleavage in T-cells. Cell Death Differ 14, 16781687.
  • 26
    Mumm JS, Schroeter EH, Saxena MT, Griesemer A, Tian X, Pan DJ, Ray WJ & Kopan R (2000) A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol Cell 5, 197206.
  • 27
    Martin L, Fluhrer R & Haass C (2009) Substrate requirements for SPPL2b-dependent regulated intramembrane proteolysis. J Biol Chem 284, 56625670.
  • 28
    Kopan R, Schroeter EH, Weintraub H & Nye JS (1996) Signal transduction by activated mNotch: importance of proteolytic processing and its regulation by the extracellular domain. Proc Natl Acad Sci USA 93, 16831688.
  • 29
    Lemberg MK & Martoglio B (2002) Requirements for signal peptide peptidase-catalyzed intramembrane proteolysis. Mol Cell 10, 735744.
  • 30
    Kragh-Hansen U, Hellec F, de Foresta B, le Maire M & Moller JV (2001) Detergents as probes of hydrophobic binding cavities in serum albumin and other water-soluble proteins. Biophys J 80, 28982911.
  • 31
    Feng L, Yan H, Wu Z, Yan N, Wang Z, Jeffrey PD & Shi Y (2007) Structure of a site-2 protease family intramembrane metalloprotease. Science 318, 16081612.
  • 32
    Shearman MS, Beher D, Clarke EE, Lewis HD, Harrison T, Hunt P, Nadin A, Smith AL, Stevenson G & Castro JL (2000) L-685,458, an aspartyl protease transition state mimic, is a potent inhibitor of amyloid beta-protein precursor gamma-secretase activity. Biochemistry 39, 86988704.
  • 33
    Wolfe MS (2009) Intramembrane-cleaving proteases. J Biol Chem 284, 1396913973.
  • 34
    Lemberg MK & Freeman M (2007) Cutting proteins within lipid bilayers: rhomboid structure and mechanism. Mol Cell 28, 930940.
  • 35
    Domonkos A, Udvardy A, Laszlo L, Nagy T & Duda E (2001) Receptor-like properties of the 26 kDa transmembrane form of TNF. Eur Cytokine Netw 12, 411419.
  • 36
    Volz B, Orberger G, Porwoll S, Hauri HP & Tauber R (1995) Selective reentry of recycling cell surface glycoproteins to the biosynthetic pathway in human hepatocarcinoma HepG2 cells. J Cell Biol 130, 537551.
  • 37
    Levental I, Lingwood D, Grzybek M, Coskun U & Simons K (2010) Palmitoylation regulates raft affinity for the majority of integral raft proteins. Proc Natl Acad Sci USA 107, 2205022054.
  • 38
    Poggi M, Kara I, Brunel JM, Landrier JF, Govers R, Bonardo B, Fluhrer R, Haass C, Alessi MC & Peiretti F (2013) Palmitoylation of TNF alpha is involved in the regulation of TNF receptor 1 signalling. Biochim Biophys Acta 1833, 602612.
  • 39
    Harder T, Scheiffele P, Verkade P & Simons K (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141, 929942.
  • 40
    Alvarez E, Girones N & Davis RJ (1990) Inhibition of the receptor-mediated endocytosis of diferric transferrin is associated with the covalent modification of the transferrin receptor with palmitic acid. J Biol Chem 265, 1664416655.
  • 41
    Auriac A, Willemetz A & Canonne-Hergaux F (2010) Lipid raft-dependent endocytosis: a new route for hepcidin-mediated regulation of ferroportin in macrophages. Haematologica 95, 12691277.
  • 42
    Mao G, Tan J, Cui MZ, Chui D & Xu X (2009) The GxxxG motif in the transmembrane domain of AbetaPP plays an essential role in the interaction of CTF beta with the gamma-secretase complex and the formation of amyloid-beta. J Alzheimers Dis 18, 167176.
  • 43
    Munter LM, Botev A, Richter L, Hildebrand PW, Althoff V, Weise C, Kaden D & Multhaup G (2010) Aberrant amyloid precursor protein (APP) processing in hereditary forms of Alzheimer disease caused by APP familial Alzheimer disease mutations can be rescued by mutations in the APP GxxxG motif. J Biol Chem 285, 2163621643.
  • 44
    Fluhrer R, Martin L, Klier B, Haug-Kroper M, Grammer G, Nuscher B & Haass C (2012) The alpha-helical content of the transmembrane domain of the British dementia protein-2 (Bri2) determines its processing by signal peptide peptidase-like 2b (SPPL2b). J Biol Chem 287, 51565163.
  • 45
    Iwao Y, Ishima Y, Yamada J, Noguchi T, Kragh-Hansen U, Mera K, Honda D, Suenaga A, Maruyama T & Otagiri M (2012) Quantitative evaluation of the role of cysteine and methionine residues in the antioxidant activity of human serum albumin using recombinant mutants. IUBMB Life 64, 450454.
  • 46
    Dassler K, Zydek M, Wandzik K, Kaup M & Fuchs H (2006) Release of the soluble transferrin receptor is directly regulated by binding of its ligand ferritransferrin. J Biol Chem 281, 32973304.