• 1
    Esko JD & Lindahl U (2001) Molecular diversity of heparan sulfate. J Clin Invest 108, 169173.
  • 2
    Esko JD & Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71, 435471.
  • 3
    Lindahl U, Kusche-Gullberg M & Kjellen L (1998) Regulated diversity of heparan sulfate. J Biol Chem 273, 2497924982.
  • 4
    Bernfield M, Kokenyesi R, Kato M, Hinkes MT, Spring J, Gallo RL & Lose EJ (1992) Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol 8, 365393.
  • 5
    Filmus J & Selleck SB (2001) Glypicans: proteoglycans with a surprise. J Clin Invest 108, 497501.
  • 6
    Cole GJ & Halfter W (1996) Agrin: an extracellular matrix heparan sulfate proteoglycan involved in cell interactions and synaptogenesis. Perspect Dev Neurobiol 3, 359371.
  • 7
    Iozzo RV, Cohen IR, Grassel S & Murdoch AD (1994) The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem J 302, 625639.
  • 8
    Andres JL, Ronnstrand L, Cheifetz S & Massague J (1991) Purification of the transforming growth factor-beta (TGF-beta) binding proteoglycan betaglycan. J Biol Chem 266, 2328223287.
  • 9
    van der Voort R, Taher TE, Wielenga VJ, Spaargaren M, Prevo R, Smit L, David G, Hartmann G, Gherardi E & Pals ST (1999) Heparan sulfate-modified CD44 promotes hepatocyte growth factor/scatter factor-induced signal transduction through the receptor tyrosine kinase c-Met. J Biol Chem 274, 64996506.
  • 10
    Heider KH, Hofmann M, Hors E, van den Berg F, Ponta H, Herrlich P & Pals ST (1993) A human homologue of the rat metastasis-associated variant of CD44 is expressed in colorectal carcinomas and adenomatous polyps. J Cell Biol 120, 227233.
  • 11
    Kato M, Wang H, Bernfield M, Gallagher JT & Turnbull JE (1994) Cell surface syndecan-1 on distinct cell types differs in fine structure and ligand binding of its heparan sulfate chains. J Biol Chem 269, 1888118890.
  • 12
    Bishop JR, Schuksz M & Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446, 10301037.
  • 13
    Beauvais DM, Burbach BJ & Rapraeger AC (2004) The syndecan-1 ectodomain regulates alphavbeta3 integrin activity in human mammary carcinoma cells. J Cell Biol 167, 171181.
  • 14
    Beauvais DM, Ell BJ, McWhorter AR & Rapraeger AC (2009) Syndecan-1 regulates alphavbeta3 and alphavbeta5 integrin activation during angiogenesis and is blocked by synstatin, a novel peptide inhibitor. J Exp Med 206, 691705.
  • 15
    Kramer KL & Yost HJ (2003) Heparan sulfate core proteins in cell-cell signaling. Annu Rev Genet 37, 461484.
  • 16
    Morgan MR, Humphries MJ & Bass MD (2007) Synergistic control of cell adhesion by integrins and syndecans. Nat Rev Mol Cell Biol 8, 957969.
  • 17
    Yoneda A & Couchman JR (2003) Regulation of cytoskeletal organization by syndecan transmembrane proteoglycans. Matrix Biol 22, 2533.
  • 18
    Rapraeger AC (2000) Syndecan-regulated receptor signaling. J Cell Biol 149, 995998.
  • 19
    Jia J, Maccarana M, Zhang X, Bespalov M, Lindahl U & Li JP (2009) Lack of L-iduronic acid in heparan sulfate affects interaction with growth factors and cell signaling. J Biol Chem 284, 1594215950.
  • 20
    Reijmers RM, Groen RW, Rozemuller H, Kuil A, de Haan-Kramer A, Csikós T, Martens AC, Spaargaren M & Pals ST (2010) Targeting EXT1 reveals a crucial role for heparan sulfate in the growth of multiple myeloma. Blood 115, 601604.
  • 21
    Reijmers RM, Vondenhoff MF, Roozendaal R, Kuil A, Li JP, Spaargaren M, Pals ST & Mebius RE (2010) Impaired lymphoid organ development in mice lacking the heparan sulfate modifying enzyme glucuronyl C5-epimerase. J Immunol 184, 36563664.
  • 22
    Lindahl U & Li JP (2009) Interactions between heparan sulfate and proteins-design and functional implications. Int Rev Cell Mol Biol 276, 105159.
  • 23
    Kreuger J, Spillmann D, Li JP & Lindahl U (2006) Interactions between heparan sulfate and proteins: the concept of specificity. J Cell Biol 174, 323327.
  • 24
    Whitelock JM & Iozzo RV (2005) Heparan sulfate: a complex polymer charged with biological activity. Chem Rev 105, 27452764.
  • 25
    Sarrazin S, Lamanna WC & Esko JD (2011) Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 3, a004952, doi:10.1101/cshperspect.a004952.
  • 26
    Zak BM, Crawford BE & Esko JD (2002) Hereditary multiple exostoses and heparan sulfate polymerization. Biochim Biophys Acta 1573, 346355.
  • 27
    Lind T, Tufaro F, McCormick C, Lindahl U & Lidholt K (1998) The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J Biol Chem 273, 2626526268.
  • 28
    McCormick C, Duncan G, Goutsos KT & Tufaro F (2000) The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparan sulfate. Proc Natl Acad Sci USA 97, 668673.
  • 29
    Lin X, Wei G, Shi Z, Dryer L, Esko JD, Wells DE & Matzuk MM (2000) Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev Biol 224, 299311.
  • 30
    Lamanna WC, Frese MA, Balleininger M & Dierks T (2008) Sulf loss influences N-, 2-O-, and 6-O-sulfation of multiple heparan sulfate proteoglycans and modulates fibroblast growth factor signaling. J Biol Chem 283, 2772427735.
  • 31
    Morimoto-Tomita M, Uchimura K, Werb Z, Hemmerich S & Rosen SD (2002) Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans. J Biol Chem 277, 4917549185.
  • 32
    Uchimura K, Morimoto-Tomita M, Bistrup A, Li J, Lyon M, Gallagher J, Werb Z & Rosen SD (2006) HSulf-2, an extracellular endoglucosamine-6-sulfatase, selectively mobilizes heparin-bound growth factors and chemokines: effects on VEGF, FGF-1, and SDF-1. BMC Biochem 7, 2.
  • 33
    Hulett MD, Freeman C, Hamdorf BJ, Baker RT, Harris MJ & Parish CR (1999) Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med 5, 803809.
  • 34
    Ilan N, Elkin M & Vlodavsky I (2006) Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 38, 20182039.
  • 35
    Vlodavsky I, Ilan N, Naggi A & Casu B (2007) Heparanase: structure, biological functions, and inhibition by heparin-derived mimetics of heparan sulfate. Curr Pharm Des 13, 20572073.
  • 36
    Derksen PW, Keehnen RM, Evers LM, van Oers MH, Spaargaren M & Pals ST (2002) Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma. Blood 99, 14051410.
  • 37
    Li JP, Gong F, Hagner-McWhirter A, Forsberg E, Abrink M, Kisilevsky R, Zhang X & Lindahl U (2003) Targeted disruption of a murine glucuronyl C5-epimerase gene results in heparan sulfate lacking L-iduronic acid and in neonatal lethality. J Biol Chem 278, 2836328366.
  • 38
    Merry CL, Bullock SL, Swan DC, Backen AC, Lyon M, Beddington RS, Wilson VA & Gallagher JT (2001) The molecular phenotype of heparan sulfate in the Hs2st-/- mutant mouse. J Biol Chem 276, 3542935434.
  • 39
    Celie JW, Reijmers RM, Slot EM, Beelen RH, Spaargaren M, Ter Wee PM, Florquin S & van den Born J (2008) Tubulointerstitial heparan sulfate proteoglycan changes in human renal diseases correlate with leukocyte influx and proteinuria. Am J Physiol Renal Physiol 294, F253F263.
  • 40
    Arpin C, Dechanet J, Van Kooten C, Merville P, Grouard G, Briere F, Banchereau J & Liu YJ (1995) Generation of memory B cells and plasma cells in vitro. Science 268, 720722.
  • 41
    Allman DM, Ferguson SE & Cancro MP (1992) Peripheral B cell maturation. I. Immature peripheral B cells in adults are heat-stable antigenhi and exhibit unique signaling characteristics. J Immunol 149, 25332540.
  • 42
    Allman DM, Ferguson SE, Lentz VM & Cancro MP (1993) Peripheral B cell maturation. II. Heat-stable antigen(hi) splenic B cells are an immature developmental intermediate in the production of long-lived marrow-derived B cells. J Immunol 151, 44314444.
  • 43
    Sanderson RD, Lalor P & Bernfield M (1989) B lymphocytes express and lose syndecan at specific stages of differentiation. Cell Regul 1, 2735.
  • 44
    Tung JW, Mrazek MD, Yang Y & Herzenberg LA (2006) Phenotypically distinct B cell development pathways map to the three B cell lineages in the mouse. Proc Natl Acad Sci USA 103, 62936298.
  • 45
    Yamashita Y, Oritani K, Miyoshi EK, Wall R, Bernfield M & Kincade PW (1999) Syndecan-4 is expressed by B lineage lymphocytes and can transmit a signal for formation of dendritic processes. J Immunol 162, 59405948.
  • 46
    Schebesta A, McManus S, Salvagiotto G, Delogu A, Busslinger GA & Busslinger M (2007) Transcription factor Pax5 activates the chromatin of key genes involved in B cell signaling, adhesion, migration, and immune function. Immunity 27, 4963.
  • 47
    Schebesta M, Pfeffer PL & Busslinger M (2002) Control of pre-BCR signaling by Pax5-dependent activation of the BLNK gene. Immunity 17, 473485.
  • 48
    Rolink A, Streb M, Nishikawa S & Melchers F (1991) The c-kit-encoded tyrosine kinase regulates the proliferation of early pre-B cells. Eur J Immunol 21, 26092612.
  • 49
    Rolink A, Grawunder U, Winkler TH, Karasuyama H & Melchers F (1994) IL-2 receptor alpha chain (CD25, TAC) expression defines a crucial stage in pre-B cell development. Int Immunol 6, 12571264.
  • 50
    Borghesi LA, Yamashita Y & Kincade PW (1999) Heparan sulfate proteoglycans mediate interleukin-7-dependent B lymphopoiesis. Blood 93, 140148.
  • 51
    Buono M, Visigalli I, Bergamasco R, Biffi A & Cosma MP (2010) Sulfatase modifying factor 1-mediated fibroblast growth factor signaling primes hematopoietic multilineage development. J Exp Med 207, 16471660.
  • 52
    Milne CD, Corfe SA & Paige CJ (2008) Heparan sulfate and heparin enhance ERK phosphorylation and mediate preBCR-dependent events during B lymphopoiesis. J Immunol 180, 28392847.
  • 53
    Reijmers RM, Groen RW, Kuil A, Weijer K, Kimberley FC, Medema JP, van Kuppevelt TH, Li JP, Spaargaren M & Pals ST (2011) Disruption of heparan sulfate proteoglycan conformation perturbs B-cell maturation and APRIL-mediated plasma cell survival. Blood 117, 61626171.
  • 54
    Duchez S, Pascal V, Cogne N, Jayat-Vignoles C, Julien R & Cogne M (2011) Glycotranscriptome study reveals an enzymatic switch modulating glycosaminoglycan synthesis during B cell development and activation. Eur J Immunol 41, 36323644.
  • 55
    Garner OB, Yamaguchi Y, Esko JD & Videm V (2008) Small changes in lymphocyte development and activation in mice through tissue-specific alteration of heparan sulphate. Immunology 125, 420429.
  • 56
    Espeli M, Rossi B, Mancini SJ, Roche P, Gauthier L & Schiff C (2006) Initiation of pre-B cell receptor signaling: common and distinctive features in human and mouse. Semin Immunol 18, 5666.
  • 57
    O'Connell FP, Pinkus JL & Pinkus GS (2004) CD138 (syndecan-1), a plasma cell marker immunohistochemical profile in hematopoietic and nonhematopoietic neoplasms. Am J Clin Pathol 121, 254263.
  • 58
    van den Born J, Salmivirta K, Henttinen T, Ostman N, Ishimaru T, Miyaura S, Yoshida K & Salmivirta M (2005) Novel heparan sulfate structures revealed by monoclonal antibodies. J Biol Chem 280, 2051620523.
  • 59
    Jarousse N, Chandran B & Coscoy L (2008) Lack of heparan sulfate expression in B-cell lines: implications for Kaposi's sarcoma-associated herpesvirus and murine gammaherpesvirus 68 infections. J Virol 82, 1259112597.
  • 60
    van der Voort R, Keehnen RM, Beuling EA, Spaargaren M & Pals ST (2000) Regulation of cytokine signaling by B cell antigen receptor and CD40-controlled expression of heparan sulfate proteoglycans. J Exp Med 192, 11151124.
  • 61
    Gordin M, Tesio M, Cohen S, Gore Y, Lantner F, Leng L, Bucala R & Shachar I (2010) c-Met and its ligand hepatocyte growth factor/scatter factor regulate mature B cell survival in a pathway induced by CD74. J Immunol 185, 20202031.
  • 62
    Coombe DR (2008) Biological implications of glycosaminoglycan interactions with haemopoietic cytokines. Immunol Cell Biol 86, 598607.
  • 63
    Bret C, Hose D, Reme T, Sprynski AC, Mahtouk K, Schved JF, Quittet P, Rossi JF, Goldschmidt H & Klein B (2009) Expression of genes encoding for proteins involved in heparan sulphate and chondroitin sulphate chain synthesis and modification in normal and malignant plasma cells. Br J Haematol 145, 350368.
  • 64
    Tokoyoda K, Hauser AE, Nakayama T & Radbruch A (2010) Organization of immunological memory by bone marrow stroma. Nat Rev Immunol 10, 193200.
  • 65
    Podar K, Richardson PG, Hideshima T, Chauhan D & Anderson KC (2007) The malignant clone and the bone-marrow environment. Best Pract Res Clin Haematol 20, 597612.
  • 66
    Tokoyoda K, Egawa T, Sugiyama T, Choi BI & Nagasawa T (2004) Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 20, 707718.
  • 67
    Radbruch A, Muehlinghaus G, Luger EO, Inamine A, Smith KG, Dorner T & Hiepe F (2006) Competence and competition: the challenge of becoming a long-lived plasma cell. Nat Rev Immunol 6, 741750.
  • 68
    Laguri C, Arenzana-Seisdedos F & Lortat-Jacob H (2008) Relationships between glycosaminoglycan and receptor binding sites in chemokines – the CXCL12 example. Carbohydr Res 343, 20182023.
  • 69
    Rueda P, Balabanian K, Lagane B, Staropoli I, Chow K, Levoye A, Laguri C, Sadir R, Delaunay T, Izquierdo E et al. (2008) The CXCL12gamma chemokine displays unprecedented structural and functional properties that make it a paradigm of chemoattractant proteins. PLoS ONE 3, e2543.
  • 70
    Hideshima T, Chauhan D, Hayashi T, Podar K, Akiyama M, Gupta D, Richardson P, Munshi N & Anderson KC (2002) The biological sequelae of stromal cell-derived factor-1alpha in multiple myeloma. Mol Cancer Ther 1, 539544.
  • 71
    O'Connor BP, Raman VS, Erickson LD, Cook WJ, Weaver LK, Ahonen C, Lin LL, Mantchev GT, Bram RJ & Noelle RJ (2004) BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med 199, 9198.
  • 72
    Belnoue E, Pihlgren M, McGaha TL, Tougne C, Rochat AF, Bossen C, Schneider P, Huard B, Lambert PH & Siegrist CA (2008) APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood 111, 27552764.
  • 73
    Kimberley FC, van Bostelen L, Cameron K, Hardenberg G, Marquart JA, Hahne M & Medema JP (2009) The proteoglycan (heparan sulfate proteoglycan) binding domain of APRIL serves as a platform for ligand multimerization and cross-linking. FASEB J 23, 15841595.
  • 74
    Hendriks J, Planelles L, de Jong-Odding J, Hardenberg G, Pals ST, Hahne M, Spaargaren M & Medema JP (2005) Heparan sulfate proteoglycan binding promotes APRIL-induced tumor cell proliferation. Cell Death Differ 12, 637648.
  • 75
    Ingold K, Zumsteg A, Tardivel A, Huard B, Steiner QG, Cachero TG, Qiang F, Gorelik L, Kalled SL, Acha-Orbea H et al. (2005) Identification of proteoglycans as the APRIL-specific binding partners. J Exp Med 201, 13751383.
  • 76
    Huard B, McKee T, Bosshard C, Durual S, Matthes T, Myit S, Donze O, Frossard C, Chizzolini C, Favre C et al. (2008) APRIL secreted by neutrophils binds to heparan sulfate proteoglycans to create plasma cell niches in human mucosa. J Clin Invest 118, 28872895.
  • 77
    Cassese G, Arce S, Hauser AE, Lehnert K, Moewes B, Mostarac M, Muehlinghaus G, Szyska M, Radbruch A & Manz RA (2003) Plasma cell survival is mediated by synergistic effects of cytokines and adhesion-dependent signals. J Immunol 171, 16841690.
  • 78
    Van Driel M, Gunthert U, van Kessel AC, Joling P, Stauder R, Lokhorst HM & Bloem AC (2002) CD44 variant isoforms are involved in plasma cell adhesion to bone marrow stromal cells. Leukemia 16, 135143.
  • 79
    Wijdenes J, Vooijs WC, Clément C, Post J, Morard F, Vita N, Laurent P, Sun RX, Klein B & Dore JM (1996) A plasmocyte selective monoclonal antibody (B-B4) recognizes syndecan-1. Br J Haematol 94, 318323.
  • 80
    Stepp MA, Gibson HE, Gala PH, Iglesia DD, Pajoohesh-Ganji A, Pal-Ghosh S, Brown M, Aquino C, Schwartz AM, Goldberger O et al. (2002) Defects in keratinocyte activation during wound healing in the syndecan-1-deficient mouse. J Cell Sci 115, 45174531.
  • 81
    Rops AL, Götte M, Baselmans MH, van den Hoven MJ, Steenbergen EJ, Lensen JF, Wijnhoven TJ, Cevikbas F, van den Heuvel LP et al. (2007) Syndecan-1 deficiency aggravates anti-glomerular basement membrane nephritis. Kidney Int 72, 12041215.
  • 82
    Kumar S, Fonseca R, Ketterling RP, Dispenzieri A, Lacy MQ, Gertz MA, Hayman SR, Buadi FK, Dingli D, Knudson RA et al. (2012) Trisomies in multiple myeloma: impact on survival in patients with high-risk cytogenetics. Blood 119, 21002105.
  • 83
    Chng WJ, Glebov O, Bergsagel PL & Kuehl WM (2007) Genetic events in the pathogenesis of multiple myeloma. Best Pract Res Clin Haematol 20, 571596.
  • 84
    Kyle RA & Rajkumar SV (2009) Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leukemia 23, 39.
  • 85
    Raab MS, Podar K, Breitkreutz I, Richardson PG & Anderson KC (2009) Multiple myeloma. Lancet 374, 324339.
  • 86
    Dalton WS (2003) The tumor microenvironment: focus on myeloma. Cancer Treat Rev 29 (Suppl 1), 1119.
  • 87
    Groen RW, de Rooij MF, Kocemba KA, Reijmers RM, de Haan-Kramer A, Overdijk MB, Aalders L, Rozemuller H, Martens AC, Bergsagel PL et al. (2011) N-cadherin-mediated adhesion of multiple myeloma cells inhibits osteoblast differentiation. Haematologica 96, 16531661.
  • 88
    de Gorter DJ, Reijmers RM, Beuling EA, Naber HP, Kuil A, Kersten MJ, Pals ST & Spaargaren M (2008) The small GTPase Ral mediates SDF-1-induced migration of B cells and multiple myeloma cells. Blood 111, 33643372.
  • 89
    Derksen PW, de Gorter DJ, Meijer HP, Bende RJ, van Dijk M, Lokhorst HM, Bloem AC, Spaargaren M & Pals ST (2003) The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma. Leukemia 17, 764774.
  • 90
    Derksen PW, Tjin E, Meijer HP, Klok MD, MacGillavry HD, van Oers MH, Lokhorst HM, Bloem AC, Clevers H, Nusse R et al. (2004) Illegitimate WNT signaling promotes proliferation of multiple myeloma cells. Proc Natl Acad Sci USA 101, 61226127.
  • 91
    Tjin EP, Derksen PW, Kataoka H, Spaargaren M & Pals ST (2004) Multiple myeloma cells catalyze hepatocyte growth factor (HGF) activation by secreting the serine protease HGF-activator. Blood 104, 21722175.
  • 92
    Mahtouk K, Cremer FW, Rème T, Jourdan M, Baudard M, Moreaux J, Requirand G, Fiol G, De Vos J, Moos M et al. (2006) Heparan sulphate proteoglycans are essential for the myeloma cell growth activity of EGF-family ligands in multiple myeloma. Oncogene 25, 71807191.
  • 93
    Mahtouk K, Tjin EP, Spaargaren M & Pals ST (2010) The HGF/MET pathway as target for the treatment of multiple myeloma and B-cell lymphomas. Biochim Biophys Acta 1806, 208219.
  • 94
    Khotskaya YB, Dai Y, Ritchie JP, MacLeod V, Yang Y, Zinn K & Sanderson RD (2009) Syndecan-1 is required for robust growth, vascularization, and metastasis of myeloma tumors in vivo. J Biol Chem 284, 2608526095.
  • 95
    Yang Y, MacLeod V, Dai Y, Khotskaya-Sample Y, Shriver Z, Venkataraman G, Sasisekharan R, Naggi A, Torri G, Casu B et al. (2007) The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood 110, 20412048.
  • 96
    Yang Y, Yaccoby S, Liu W, Langford JK, Pumphrey CY, Theus A, Epstein J & Sanderson RD (2002) Soluble syndecan-1 promotes growth of myeloma tumors in vivo. Blood 100, 610617.
  • 97
    Moreaux J, Legouffe E, Jourdan E, Quittet P, Rème T, Lugagne C, Moine P, Rossi JF, Klein B & Tarte K (2004) BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 103, 31483157.
  • 98
    Tai YT, Li XF, Breitkreutz I, Song W, Neri P, Catley L, Podar K, Hideshima T, Chauhan D, Raje N et al. (2006) Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res 66, 66756682.
  • 99
    Moreaux J, Sprynski AC, Dillon SR, Mahtouk K, Jourdan M, Ythier A, Moine P, Robert N, Jourdan E, Rossi JF et al. (2009) APRIL and TACI interact with syndecan-1 on the surface of multiple myeloma cells to form an essential survival loop. Eur J Haematol 83, 119129.
  • 100
    Bischof D, Elsawa SF, Mantchev G, Yoon J, Michels GE, Nilson A, Sutor SL, Platt JL, Ansell SM, von Bulow G et al. (2006) Selective activation of TACI by syndecan-2. Blood 107, 32353242.
  • 101
    Yaccoby S, Pennisi A, Li X, Dillon SR, Zhan F, Barlogie B & Shaughnessy JD Jr (2008) Atacicept (TACI-Ig) inhibits growth of TACI(high) primary myeloma cells in SCID-hu mice and in coculture with osteoclasts. Leukemia 22, 406413.
  • 102
    Dai Y, Yang Y, MacLeod V, Yue X, Rapraeger AC, Shriver Z, Venkataraman G, Sasisekharan R & Sanderson RD (2005) HSulf-1 and HSulf-2 are potent inhibitors of myeloma tumor growth in vivo. J Biol Chem 280, 4006640073.
  • 103
    Groen RW, Noort WA, Raymakers RA, Prins HJ, Aalders L, Hofhuis FM, Moerer P, van Velzen JF, Bloem AC, van Kessel B et al. (2012) Reconstructing the human hematopoietic niche in immunodeficient mice: opportunities for studying primary multiple myeloma. Blood 120, e9e16.
  • 104
    Rozemuller H, van der Spek E, Bogers-Boer LH, Zwart MC, Verweij V, Emmelot M, Groen RW, Spaapen R, Bloem AC, Lokhorst HM et al. (2008) A bioluminescence imaging based in vivo model for preclinical testing of novel cellular immunotherapy strategies to improve the graft-versus-myeloma effect. Haematologica 93, 10491057.
  • 105
    Spaapen RM, Groen RW, van den Oudenalder K, Guichelaar T, van Elk M, Aarts-Riemens T, Bloem AC, Storm G, Martens AC, Lokhorst HM et al. (2010) Eradication of medullary multiple myeloma by CD4+ cytotoxic human T lymphocytes directed at a single minor histocompatibility antigen. Clin Cancer Res 16, 54815488.
  • 106
    Kelly T, Miao HQ, Yang Y, Navarro E, Kussie P, Huang Y, MacLeod V, Casciano J, Joseph L, Zhan F et al. (2003) High heparanase activity in multiple myeloma is associated with elevated microvessel density. Cancer Res 63, 87498756.
  • 107
    Mahtouk K, Hose D, Raynaud P, Hundemer M, Jourdan M, Jourdan E, Pantesco V, Baudard M, De Vos J, Larroque M et al. (2007) Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma. Blood 109, 49144923.
  • 108
    Purushothaman A, Uyama T, Kobayashi F, Yamada S, Sugahara K, Rapraeger AC & Sanderson RD (2010) Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood 115, 24492457.
  • 109
    Yang Y, Ren Y, Ramani VC, Nan L, Suva LJ & Sanderson RD (2010) Heparanase enhances local and systemic osteolysis in multiple myeloma by upregulating the expression and secretion of RANKL. Cancer Res 70, 83298338.
  • 110
    Yang Y, Macleod V, Miao HQ, Theus A, Zhan F, Shaughnessy JD Jr, Sawyer J, Li JP, Zcharia E, Vlodavsky I et al. (2007) Heparanase enhances syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis. J Biol Chem 282, 1332613333.
  • 111
    Hideshima T, Mitsiades C, Tonon G, Richardson PG & Anderson KC (2007) Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 7, 585598.
  • 112
    Ritchie JP, Ramani VC, Ren Y, Naggi A, Torri G, Casu B, Penco S, Pisano C, Carminati P, Tortoreto M et al. (2011) SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clin Cancer Res 17, 13821393.
  • 113
    Di Giacomo F, Lewandowski D, Cabannes E, Nancy-Portebois V, Petitou M, Fichelson S & Romeo PH (2012) Heparan sulfate mimetics can efficiently mobilize long-term hematopoietic stem cells. Haematologica 97, 491499.
  • 114
    Bullock SL, Fletcher JM, Beddington RS & Wilson VA (1998) Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev 12, 18941906.
  • 115
    Ringvall M, Ledin J, Holmborn K, van Kuppevelt T, Ellin F, Eriksson I, Olofsson AM, Kjellen L & Forsberg E (2000) Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. J Biol Chem 275, 2592625930.
  • 116
    Lindahl U (2007) Heparan sulfate-protein interactions – a concept for drug design? Thromb Haemost 98, 109115.
  • 117
    Lyon M, Deakin JA, Mizuno K, Nakamura T & Gallagher JT (1994) Interaction of hepatocyte growth factor with heparan sulfate. Elucidation of the major heparan sulfate structural determinants. J Biol Chem 269, 1121611223.
  • 118
    Ashikari S, Habuchi H & Kimata K (1995) Characterization of heparan sulfate oligosaccharides that bind to hepatocyte growth factor. J Biol Chem 270, 2958629593.