SEARCH

SEARCH BY CITATION

References

  • 1
    Uriz MJ, Turon X, Becerro MA & Agell G (2003) Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions. Microsc Res Tech 62, 279299.
  • 2
    Müller WEG, Schloßmacher U, Eckert C, Krasko A, Boreiko A, Ushijima H, Wolf SE, Tremel W & Schröder HC (2007) Analysis of the axial filament in spicules of the demosponge Geodia cydonium: different silicatein composition in microscleres (asters) and megascleres (oxeas and triaenes). Eur J Cell Biol 86, 473487.
  • 3
    Müller WEG (2005) Spatial and temporal expression patterns in animals. In Encyclopedia of Molecular Cell Biology and Molecular Medicine, Vol. 13 (Meyers RA, ed.), pp. 269309. Wiley-VCH Press, Weinheim, Germany.
  • 4
    Wang XH, Hu S, Gan L, Wiens M & Müller WEG (2010) Sponges (Porifera) as living metazoan witnesses from the Neoproterozoic: biomineralization and the concept of their evolutionary success. Terra Nova 22, 111.
  • 5
    Wang XH, Schröder HC, Brandt D, Wiens M, Lieberwirth I, Glasser G, Schloßmacher U, Wang SF & Müller WEG (2011) Sponge bio-silica formation involves syneresis following polycondensation in vivo. ChemBioChem 12, 23162324.
  • 6
    Wang XH, Wiens M, Schröder HC, Hu S, Mugnaioli E, Kolb U, Tremel W, Pisignano D & Müller WEG (2010) Morphology of sponge spicules: silicatein, a structural protein for bio-silica formation. Adv Eng Mater 12, B422B437.
  • 7
    Wang XH, Wiens M, Schloßmacher U, Jochum KP, Schröder HC & Müller WEG (2012) Bio-sintering/bio-fusion of silica in sponge spicules: a review. Adv Eng Mater 14, B4B12.
  • 8
    Müller WEG (2003) The origin of metazoan complexity: Porifera as integrated animals. Integr Comp Biol 43, 310.
  • 9
    Wang XH, Schröder HC & Müller WEG (2009) Giant siliceous spicules from the deep-sea glass sponge Monorhaphis chuni: morphology, biochemistry and molecular biology. Int Rev Cell Mol Biol 273, 69115.
  • 10
    Shimizu K, Cha J, Stucky GD & Morse DE (1998) Silicatein α: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA 95, 62346238.
  • 11
    Cha JN, Shimizu K, Zhou Y, Christianssen SC, Chmelka BF, Stucky GD & Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA 96, 361365.
  • 12
    Krasko A, Batel R, Schröder HC, Müller IM & Müller WEG (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem 267, 48784887.
  • 13
    Krasko A, Gamulin V, Seack J, Steffen R, Schröder HC & Müller WEG (1997) Cathepsin, a major protease of the marine sponge Geodia cydonium: purification of the enzyme and molecular cloning of cDNA. Mol Mar Biol Biotechnol 6, 296307.
  • 14
    Morse DE (1999) Silicon biotechnology: harnessing biological silica production to construct new materials. Trends Biotechnol 17, 230232.
  • 15
    Müller WEG, Boreiko A, Wang XH, Belikov SI, Wiens M, Grebenjuk VA, Schloßmacher U & Schröder HC (2007) Silicateins, the major biosilica forming enzymes present in demosponges: protein analysis and phylogenetic relationship. Gene 395, 6271.
  • 16
    Wiens M, Wang XH, Schröder HC, Kolb U, Schloßmacher U, Ushijima H & Müller WEG (2010) The role of biosilica in the osteoprotegerin/RANKL ratio in human osteoblast-like cells. Biomaterials 31, 77167725.
  • 17
    Wiens M, Schröder HC, Wang XH, Link T, Steindorf D & Müller WEG (2011) Isolation of the silicatein–α interactor silintaphin–2 by a novel solid-phase pull-down assay. Biochemistry 50, 19811990.
  • 18
    Murr MM & Morse DE (2005) Fractal intermediates in the self-assembly of silicatein filaments. Proc Natl Acad Sci USA 102, 1165711662.
  • 19
    Müller WEG, Boreiko A, Schloßmacher U, Wang XH, Tahir MN, Tremel W, Brandt D, Kaandorp JA & Schröder HC (2007) Fractal-related assembly of the axial filament in the demosponge Suberites domuncula: relevance to biomineralization and the formation of biogenic silica. Biomaterials 28, 45014511.
  • 20
    Müller WEG, Wang XH, Wiens M, Schloßmacher U, Jochum KP & Schröder HC (2011) Hardening of bio-silica in sponge spicules involves an aging process after its enzymatic polycondensation: evidence for an aquaporin-mediated water absorption. Biochim Biophys Acta 1810, 713726.
  • 21
    Wang XH, Jochum KP, Schröder HC & Müller WEG (2011) The largest bio-silica structure on Earth: the giant basal spicule from the deep-sea glass sponge Monorhaphis chuni. Evid Based Complement Alternat Med 2011, 540987.
  • 22
    Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B 237, 3772.
  • 23
    Fife PC (1979) Mathematical Aspects of Reacting and Diffusing Systems. Springer, Berlin.
  • 24
    Meinhardt H & Gierer A (2000) Pattern formation by local self activation and lateral inhibition. BioEssays 22, 753760.
  • 25
    Miura T & Mainim PK (2004) Speed of pattern appearance in reaction–diffusion models: implications in the pattern formation of limb bud mesenchyme cells. Bull Math Biol 66, 627649.
  • 26
    Kiskowski MA, Alber MS, Thomas GL, Glazier JA, Bronstein NB, Pu J & Newman SA (2004) Interplay between activator–inhibitor coupling and cell-matrix adhesion in a cellular automaton model for chondrogenic patterning. Dev Biol 271, 372387.
  • 27
    Meinhardt H (1982) Models of Biological Pattern Formation. Academic Press, London.
  • 28
    Zhu J, Zhang YT, Alber MS & Newman SA (2010) Bare bones pattern formation: a core regulatory network in varying geometries reproduces major features of vertebrate limb development and evolution. PLoS One 5, e10892.
  • 29
    Schröder HC, Wang XH, Manfrin A, Yu SH, Grebenjuk VA, Korzhev M, Wiens M, Schloßmacher U & Müller WEG (2012) Silicatein: acquisition of structure-guiding and structure-forming properties during maturation from the pro-silicatein to the silicatein form. J Biol Chem 287, 2219622205.
  • 30
    Godat E, Chowdhury S, Lecaille F, Belghazi M, Purisima EO & Lalmanach G (2005) Inhibition of a cathepsin L-like cysteine protease by a chimeric propeptide-derived inhibitor. Biochemistry 44, 1048610493.
  • 31
    Schloßmacher U, Wiens M, Schröder HC, Wang XH, Jochum KP & Müller WEG (2011) Silintaphin–1: interaction with silicatein during structure guiding biosilica formation. FEBS J 278, 11451155.
  • 32
    Tahir MN, Théato P, Müller WEG, Schröder HC, Janshoff A, Zhang J, Huth J & Tremel W (2004) Monitoring the formation of biosilica catalysed by histidine-tagged silicatein. Chem Commun 24, 28482849.
  • 33
    Flügel S, Fischer K, McDaniel JR, Chilkoti A & Schmidt M (2010) Chain stiffness of elastin-like polypeptides. Biomacromolecules 11, 32163218.
  • 34
    Dahl S, Halkier T, Lauritzen C, Dolec I, Pedersen J, Turk V & Turk B (2001) Human recombinant dipeptidyl-peptidase I (cathepsin C) can be activated by cathepsins L and S but not by autocatalytic processing. Biochemistry 40, 16711678.
  • 35
    Schröder HC, Boreiko A, Korzhev M, Tahir MN, Tremel W, Eckert C, Ushijima H, Müller IM & Müller WEG (2006) Co-expression and functional interaction of silicatein with galectin: matrix-guided formation of siliceous spicules in the marine demosponge Suberites domuncula. J Biol Chem 281, 1200112009.
  • 36
    Quraishi O & Storer A (2001) Identification of internal autoproteolytic cleavage sites within the prosegments of recombinant procathepsin B and procathepsin S. Contribution of a plausible unimolecular autoproteolytic event for the processing of zymogens belonging to the papain family. J Biol Chem 276, 81188124.
  • 37
    Cygler M & Mort J (1997) Proregion structure of members of the papain superfamily. Mode of inhibition of enzymatic activity. Biochimie 79, 645652.
  • 38
    Müntener K, Willimann A, Zwicky R, Svoboda B, Mach L & Baici A (2005) Folding competence of N–terminally truncated forms of human procathepsin B. J Biol Chem 280, 1197311980.
  • 39
    Conner GE (1992) The role of the cathepsin D propeptide in sorting to the lysosome. J Biol Chem 267, 2173821745.
  • 40
    Wiederanders B (2000) The function of propeptide domains of cysteine proteinases. Adv Exp Med Biol 477, 261270.
  • 41
    Schilling K, Körner A, Sehmisch S, Kreusch A, Kleint R, Benedix Y, Schlabrakowski A & Wiederanders B (2009) Selectivity of propeptide–enzyme interaction in cathepsin L-like cysteine proteases. Biol Chem 390, 167174.
  • 42
    Hearps AC, Pryor MJ, Kuusisto HV, Rawlinson SM, Piller SC & Jans DA (2007) The biarsenical dye Lumio™ exhibits a reduced ability to specifically detect tetracysteine-containing proteins within live cells. J Fluoresc 17, 593597.
  • 43
    Rimola A, Sodupe M & Ugliengo P (2009) Affinity scale for the interaction of amino acids with silica surfaces. J Phys Chem C 113, 57415750.
  • 44
    Perry CC & Keeling-Tucker T (2000) Biosilicification: the role of the organic matrix in structure control. J Biol Inorg Chem 5, 537550.
  • 45
    Liang MK, Patwardhan SV, Danilovtseva EN, Annenkov VV & Perry CC (2009) Imidazole catalyzed silica synthesis: progress toward understanding the role of histidine in (bio)silicification. J Mater Res 24, 17001708.
  • 46
    Zhou Y, Shimizu K, Cha JN, Stucky GD & Morse DE (1999) Efficient catalysis of polysiloxane synthesis by silicatein α requires specific hydroxy and imidazole functionalities. Angew Chem Int Ed 38, 780782.
  • 47
    Schröder HC, Wiens M, Schloßmacher U, Brandt D & Müller WEG (2012) Silicatein-mediated polycondensation of orthosilicic acid: modeling of catalytic mechanism involving ring formation. Silicon 4, 3338.
  • 48
    Patwardhan SV & Clarson SJ (2002) Silicification and biosilicification. Poly-l–histidine mediated synthesis of silica at neutral pH. J Inorg Organomet Polym 12, 109116.
  • 49
    Hecky RE, Mopper K, Kilham P & Degens ET (1973) The amino acid and sugar composition of diatom cell walls. Mar Biol 19, 323331.
  • 50
    Fournier AC & McGrath KM (2011) Porous protein–silica composite formation: manipulation of silicate porosity and protein conformation. Soft Matter 7, 49184927.
  • 51
    Chou PY & Fasman GD (1978) Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol 47, 45148.
  • 52
    Jerala R, Zerovnik E, Kidric J & Turk V (1998) pH-induced conformational transitions of the propeptide of human cathepsin L. A role for a molten globule state in zymogen activation. J Biol Chem 273, 1149811504.
  • 53
    Wiens M, Bausen M, Natalio F, Link T, Schloßmacher U & Müller WEG (2009) The role of the silicatein–α interactor silintaphin–1 in biomimetic biomineralization. Biomaterials 30, 16481656.
  • 54
    Bondos SE & Bicknell A (2003) Detection and prevention of protein aggregation before, during, and after purification. Anal Biochem 316, 223231.
  • 55
    Marcum JM, Dedmanm JR, Brinkley BR & Means AR (1978) Control of microtubule assembly–disassembly by calcium-dependent regulator protein. Proc Natl Acad Sci USA 75, 37713775.
  • 56
    Bu Z & Callaway DJ (2011) Proteins move! Protein dynamics and long-range allostery in cell signaling. Adv Protein Chem Struct Biol 83, 163221.
  • 57
    Schröder HC, Natalio F, Shukoor I, Tremel W, Schloßmacher U, Wang XH & Müller WEG (2007) Apposition of silica lamellae during growth of spicules in the demosponge Suberites domuncula: biological/biochemical studies and chemical/biomimetical confirmation. J Struct Biol 159, 325334.
  • 58
    Müller WEG, Rothenberger M, Boreiko A, Tremel W, Reiber A & Schröder HC (2005) Formation of siliceous spicules in the marine demosponge Suberites domuncula. Cell Tissue Res 321, 285297.
  • 59
    Müller WEG, Wang XH, Schröder HC, Korzhev M, Grebenjuk VA, Markl JS, Jochum KP, Pisignano D & Wiens M (2010) A cryptochrome-based photosensory system in the siliceous sponge Suberites domuncula (Demospongiae). FEBS J 277, 11821201.
  • 60
    Müller WEG, Belikov SI, Tremel W, Perry CC, Gieskes WWC, Boreiko A & Schröder HC (2006) Siliceous spicules in marine demosponges (example Suberites domuncula). Micron 37, 107120.
  • 61
    Petersen S (2007) Automated protein purification using His-tagged affinity chromatography with the Profinia protein purification system. FASEB J 21, lb91.
  • 62
    Tong X, Tang T, Feng Z & Huang B (2002) Preparation of polymer/silica nanoscale hybrids through sol-gel method involving emulsion polymers. II. Poly(ethylacrylate)/SiO2. J Appl Polym Sci 86, 35323536.
  • 63
    Sasaki Y, Sone T, Yoshida S, Yahata K, Hotta J, Chesnut JD, Honda T & Imamoto F (2004) Evidence for high specificity and efficiency of multiple recombination signals in mixed DNA cloning by the multisite Gateway system. J Biotechnol 107, 233243.
  • 64
    Senf F, Tommassen J & Koster M (2008) Polar secretion of proteins via the Xcp type II secretion system in Pseudomonas aeruginosa. Microbiology 154, 30253032.
  • 65
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.
  • 66
    Müller WEG, Kasueske M, Wang XH, Schröder HC, Wang Y, Pisignano D & Wiens M (2009) Luciferase: a light source for the silica-based optical waveguides (spicules) in the demosponge Suberites domuncula. Cell Mol Life Sci 66, 537552.
  • 67
    Kyhse-Andersen J (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 10, 203209.
  • 68
    Gaskin DJH, Starck K & Vulfson EN (2000) Identification of inorganic crystal-specific sequences using phage display combinatorial library of short peptides: a feasibility study. Biotechnol Lett 22, 12111216.
  • 69
    Naik RR, Jones SE, Murray CJ, McAuliffe JC, Vaia RA & Stone MO (2004) Peptide templates for nanoparticle synthesis derived from polymerase chain reaction-driven phage display. Adv Funct Mater 14, 2530.
  • 70
    Müller WEG, Wang XH, Grebenjuk VA, Korzhev M, Wiens M, Schloßmacher U & Schröder HC (2012) Common genetic denominators for Ca++-based skeleton in Metazoa: role of osteoclast-stimulating factor and of carbonic anhydrase in a calcareous sponge. PLoS One 7, e34617.
  • 71
    Kyte J & Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157, 105132.
  • 72
    Kruger NJ (2002) The Bradford method for protein quantification. In The Protein Protocols Handbook, 2nd edn (Walker JM, ed.), pp. 1521. Humana Press, Totowa, NJ.
  • 73
    Sachs L (1984) Angewandte Statistik, p. 242. Springer, Berlin.