• 1
    Aziz A, Liu QC & Dilworth FJ (2010) Regulating a master regulator: establishing tissue-specific gene expression in skeletal muscle. Epigenetics 5, 691695.
  • 2
    Dilworth FJ & Blais A (2011) Epigenetic regulation of satellite cell activation during muscle regeneration. Stem Cell Res Ther 2, 18. doi:10.1186/scrt59.
  • 3
    Spitz F & Furlong EE (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13, 613626.
  • 4
    Weintraub H, Tapscott SJ, Davis RL, Thayer MJ, Adam MA, Lassar AB & Miller AD (1989) Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci USA 86, 54345438.
  • 5
    Tapscott SJ (2005) The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development 132, 26852695.
  • 6
    Davis RL & Weintraub H (1992) Acquisition of myogenic specificity by replacement of three amino acid residues from MyoD into E12. Science 256, 10271030.
  • 7
    Tapscott SJ, Davis RL, Thayer MJ, Cheng PF, Weintraub H & Lassar AB (1988) MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science 242, 405411.
  • 8
    Berkes CA & Tapscott SJ (2005) MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol 16, 585595.
  • 9
    Cao Y, Yao Z, Sarkar D, Lawrence M, Sanchez GJ, Parker MH, MacQuarrie KL, Davison J, Morgan MT, Ruzzo WL et al. (2010) Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming. Dev Cell 18, 662674.
  • 10
    Soleimani VD, Yin H, Jahani-Asl A, Ming H, Kockx CE, van Ijcken WF, Grosveld F & Rudnicki MA (2012) Snail regulates MyoD binding-site occupancy to direct enhancer switching and differentiation-specific transcription in myogenesis. Mol Cell 47, 457468.
  • 11
    Blais A & Dynlacht BD (2005) Constructing transcriptional regulatory networks. Genes Dev 19, 14991511.
  • 12
    Atchley WR, Fitch WM & Bronner-Fraser M (1994) Molecular evolution of the MyoD family of transcription factors. Proc Natl Acad Sci USA 91, 1152211526.
  • 13
    Krause M, Fire A, Harrison SW, Priess J & Weintraub H (1990) CeMyoD accumulation defines the body wall muscle cell fate during C. elegans embryogenesis. Cell 63, 907919.
  • 14
    Venuti JM, Goldberg L, Chakraborty T, Olson EN & Klein WH (1991) A myogenic factor from sea urchin embryos capable of programming muscle differentiation in mammalian cells. Proc Natl Acad Sci USA 88, 62196223.
  • 15
    Michelson AM, Abmayr SM, Bate M, Arias AM & Maniatis T (1990) Expression of a MyoD family member prefigures muscle pattern in Drosophila embryos. Genes Dev 4, 20862097.
  • 16
    Wang Y & Jaenisch R (1997) Myogenin can substitute for Myf5 in promoting myogenesis but less efficiently. Development 124, 25072513.
  • 17
    Zhu Z & Miller JB (1997) MRF4 can substitute for myogenin during early stages of myogenesis. Dev Dyn 209, 233241.
  • 18
    Bergstrom DA & Tapscott SJ (2001) Molecular distinction between specification and differentiation in the myogenic basic helix–loop–helix transcription factor family. Mol Cell Biol 21, 24042412.
  • 19
    Berkes CA, Bergstrom DA, Penn BH, Seaver KJ, Knoepfler PS & Tapscott SJ (2004) Pbx marks genes for activation by MyoD indicating a role for a homeodomain protein in establishing myogenic potential. Mol Cell 14, 465477.
  • 20
    Rudnicki MA, Braun T, Hinuma S & Jaenisch R (1992) Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell 71, 383390.
  • 21
    Braun T, Rudnicki MA, Arnold HH & Jaenisch R (1992) Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell 71, 369382.
  • 22
    Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, Arnold HH & Jaenisch R (1993) MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75, 13511359.
  • 23
    Kablar B, Krastel K, Ying C, Asakura A, Tapscott SJ & Rudnicki MA (1997) MyoD and Myf-5 differentially regulate the development of limb versus trunk skeletal muscle. Development 124, 47294738.
  • 24
    Haldar M, Karan G, Tvrdik P & Capecchi MR (2008) Two cell lineages, myf5 and myf5-independent, participate in mouse skeletal myogenesis. Dev Cell 14, 437445.
  • 25
    Gensch N, Borchardt T, Schneider A, Riethmacher D & Braun T (2008) Different autonomous myogenic cell populations revealed by ablation of Myf5-expressing cells during mouse embryogenesis. Development 135, 15971604.
  • 26
    Hasty P, Bradley A, Morris JH, Edmondson DG, Venuti JM, Olson EN & Klein WH (1993) Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364, 501506.
  • 27
    Nabeshima Y, Hanaoka K, Hayasaka M, Esumi E, Li S, Nonaka I & Nabeshima Y (1993) Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 364, 532535.
  • 28
    Rawls A, Morris JH, Rudnicki M, Braun T, Arnold HH, Klein WH & Olson EN (1995) Myogenin's functions do not overlap with those of MyoD or Myf-5 during mouse embryogenesis. Dev Biol 172, 3750.
  • 29
    Kassar-Duchossoy L, Gayraud-Morel B, Gomes D, Rocancourt D, Buckingham M, Shinin V & Tajbakhsh S (2004) Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature 431, 466471.
  • 30
    Zhang W, Behringer RR & Olson EN (1995) Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies. Genes Dev 9, 13881399.
  • 31
    Rawls A, Valdez MR, Zhang W, Richardson J, Klein WH & Olson EN (1998) Overlapping functions of the myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice. Development 125, 23492358.
  • 32
    Braun T, Buschhausen-Denker G, Bober E, Tannich E & Arnold HH (1989) A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J 8, 701709.
  • 33
    Edmondson DG & Olson EN (1989) A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev 3, 628640.
  • 34
    Miner JH & Wold B (1990) Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Proc Natl Acad Sci USA 87, 10891093.
  • 35
    Yusuf F & Brand-Saberi B (2006) The eventful somite: patterning, fate determination and cell division in the somite. Anat Embryol (Berl) 211 (Suppl 1), 2130.
  • 36
    Borycki AG, Brunk B, Tajbakhsh S, Buckingham M, Chiang C & Emerson CP Jr (1999) Sonic hedgehog controls epaxial muscle determination through Myf5 activation. Development 126, 40534063.
  • 37
    Ott MO, Bober E, Lyons G, Arnold H & Buckingham M (1991) Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development 111, 10971107.
  • 38
    Cheng L, Alvares LE, Ahmed MU, El-Hanfy AS & Dietrich S (2004) The epaxial-hypaxial subdivision of the avian somite. Dev Biol 274, 348369.
  • 39
    Sassoon D, Lyons G, Wright WE, Lin V, Lassar A, Weintraub H & Buckingham M (1989) Expression of two myogenic regulatory factors myogenin and MyoD1 during mouse embryogenesis. Nature 341, 303307.
  • 40
    Bober E, Lyons GE, Braun T, Cossu G, Buckingham M & Arnold HH (1991) The muscle regulatory gene, Myf-6, has a biphasic pattern of expression during early mouse development. J Cell Biol 113, 12551265.
  • 41
    Hinterberger TJ, Sassoon DA, Rhodes SJ & Konieczny SF (1991) Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development. Dev Biol 147, 144156.
  • 42
    Smith TH, Kachinsky AM & Miller JB (1994) Somite subdomains, muscle cell origins, and the four muscle regulatory factor proteins. J Cell Biol 127, 95105.
  • 43
    Brack AS & Rando TA (2012) Tissue-specific stem cells: lessons from the skeletal muscle satellite cell. Cell Stem Cell 10, 504514.
  • 44
    Zammit PS, Heslop L, Hudon V, Rosenblatt JD, Tajbakhsh S, Buckingham ME, Beauchamp JR & Partridge TA (2002) Kinetics of myoblast proliferation show that resident satellite cells are competent to fully regenerate skeletal muscle fibers. Exp Cell Res 281, 3949.
  • 45
    Crist CG, Montarras D & Buckingham M (2012) Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules. Cell Stem Cell 11, 118126.
  • 46
    Hu P, Geles KG, Paik JH, DePinho RA & Tjian R (2008) Codependent activators direct myoblast-specific MyoD transcription. Dev Cell 15, 534546.
  • 47
    Grifone R, Demignon J, Houbron C, Souil E, Niro C, Seller MJ, Hamard G & Maire P (2005) Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryo. Development 132, 22352249.
  • 48
    Deato MD & Tjian R (2007) Switching of the core transcription machinery during myogenesis. Genes Dev 21, 21372149.
  • 49
    Yao J & Tjian R (2011) Sub-nuclear compartmentalization of core promoter factors and target genes. Cell Cycle 10, 24052406.
  • 50
    Deato MD, Marr MT, Sottero T, Inouye C, Hu P & Tjian R (2008) MyoD targets TAF3/TRF3 to activate myogenin transcription. Mol Cell 32, 96105.
  • 51
    Liu QC, Zha X, Faralli H, Yin H, Louis-Jeune C, Perdiguero E, Pranckeviciene E, Munoz-Canoves P, Rudnicki MA, Brand M et al. (2012) Comparative expression profiling identifies differential roles for Myogenin and p38alpha MAPK signaling in myogenesis. J Mol Cell Biol 4, 386397.
  • 52
    Gerber AN, Klesert TR, Bergstrom DA & Tapscott SJ (1997) Two domains of MyoD mediate transcriptional activation of genes in repressive chromatin: a mechanism for lineage determination in myogenesis. Genes Dev 11, 436450.
  • 53
    Ishibashi J, Perry RL, Asakura A & Rudnicki MA (2005) MyoD induces myogenic differentiation through cooperation of its NH2- and COOH-terminal regions. J Cell Biol 171, 471482.
  • 54
    de la Serna IL, Ohkawa Y, Berkes CA, Bergstrom DA, Dacwag CS, Tapscott SJ & Imbalzano AN (2005) MyoD targets chromatin remodeling complexes to the myogenin locus prior to forming a stable DNA-bound complex. Mol Cell Biol 25, 39974009.
  • 55
    Dilworth FJ, Seaver KJ, Fishburn AL, Htet SL & Tapscott SJ (2004) In vitro transcription system delineates the distinct roles of the coactivators pCAF and p300 during MyoD/E47-dependent transactivation. Proc Natl Acad Sci USA 101, 1159311598.
  • 56
    Puri PL, Sartorelli V, Yang XJ, Hamamori Y, Ogryzko VV, Howard BH, Kedes L, Wang JY, Graessmann A, Nakatani Y et al. (1997) Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol Cell 1, 3545.
  • 57
    Cao Y, Kumar RM, Penn BH, Berkes CA, Kooperberg C, Boyer LA, Young RA & Tapscott SJ (2006) Global and gene-specific analyses show distinct roles for Myod and Myog at a common set of promoters. EMBO J 25, 502511.
  • 58
    Ohkawa Y, Marfella CG & Imbalzano AN (2006) Skeletal muscle specification by myogenin and Mef2D via the SWI/SNF ATPase Brg1. EMBO J 25, 490501.
  • 59
    Moss JB, Olson EN & Schwartz RJ (1996) The myogenic regulatory factor MRF4 represses the cardiac alpha-actin promoter through a negative-acting N-terminal protein domain. J Biol Chem 271, 3168831694.
  • 60
    Suelves M, Lluis F, Ruiz V, Nebreda AR & Munoz-Canoves P (2004) Phosphorylation of MRF4 transactivation domain by p38 mediates repression of specific myogenic genes. EMBO J 23, 365375.
  • 61
    Blais A, Tsikitis M, Acosta-Alvear D, Sharan R, Kluger Y & Dynlacht BD (2005) An initial blueprint for myogenic differentiation. Genes Dev 19, 553569.
  • 62
    Chakravarthy AB, Catalano PJ, Mondschein JK, Rosenthal DI, Haller DG, Whittington R, Spitz FR, Wagner H, Sigurdson ER, Tschetter LK et al. (2012) Phase II trial of paclitaxel/cisplatin followed by surgery and adjuvant radiation therapy and 5-fluorouracil/leucovorin for gastric cancer (ECOG E7296). Gastrointest Cancer Res 5, 191197.
  • 63
    Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, Bernstein BE, Bickel P, Brown JB, Cayting P et al. (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 22, 18131831.
  • 64
    Zhang K, Sha J & Harter ML (2010) Activation of Cdc6 by MyoD is associated with the expansion of quiescent myogenic satellite cells. J Cell Biol 188, 3948.
  • 65
    Megeney LA, Kablar B, Garrett K, Anderson JE & Rudnicki MA (1996) MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev 10, 11731183.
  • 66
    Ustanina S, Carvajal J, Rigby P & Braun T (2007) The myogenic factor Myf5 supports efficient skeletal muscle regeneration by enabling transient myoblast amplification. Stem Cells 25, 20062016.
  • 67
    Kitzmann M, Carnac G, Vandromme M, Primig M, Lamb NJ & Fernandez A (1998) The muscle regulatory factors MyoD and myf-5 undergo distinct cell cycle-specific expression in muscle cells. J Cell Biol 142, 14471459.
  • 68
    Venkat A, Jauch E, Russell WS, Crist CR & Farrell R (2012) Care of the patient with an autism spectrum disorder by the general physician. Postgrad Med J 88, 472481.
  • 69
    Lindon C, Montarras D & Pinset C (1998) Cell cycle-regulated expression of the muscle determination factor Myf5 in proliferating myoblasts. J Cell Biol 140, 111118.
  • 70
    Doucet C, Gutierrez GJ, Lindon C, Lorca T, Lledo G, Pinset C & Coux O (2005) Multiple phosphorylation events control mitotic degradation of the muscle transcription factor Myf5. BMC Biochem 6, 27, doi:10.1186/1471-2091-6-27.
  • 71
    Song A, Wang Q, Goebl MG & Harrington MA (1998) Phosphorylation of nuclear MyoD is required for its rapid degradation. Mol Cell Biol 18, 49944999.
  • 72
    Tintignac LA, Leibovitch MP, Kitzmann M, Fernandez A, Ducommun B, Meijer L & Leibovitch SA (2000) Cyclin E-cdk2 phosphorylation promotes late G1-phase degradation of MyoD in muscle cells. Exp Cell Res 259, 300307.
  • 73
    Batonnet-Pichon S, Tintignac LJ, Castro A, Sirri V, Leibovitch MP, Lorca T & Leibovitch SA (2006) MyoD undergoes a distinct G2/M-specific regulation in muscle cells. Exp Cell Res 312, 39994010.
  • 74
    Innocenzi A, Latella L, Messina G, Simonatto M, Marullo F, Berghella L, Poizat C, Shu CW, Wang JY, Puri PL et al. (2011) An evolutionarily acquired genotoxic response discriminates MyoD from Myf5, and differentially regulates hypaxial and epaxial myogenesis. EMBO Rep 12, 164171.
  • 75
    Rouse J & Jackson SP (2002) Interfaces between the detection, signaling, and repair of DNA damage. Science 297, 547551.
  • 76
    Zhou BB & Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408, 433439.
  • 77
    Puri PL, Bhakta K, Wood LD, Costanzo A, Zhu J & Wang JY (2002) A myogenic differentiation checkpoint activated by genotoxic stress. Nat Genet 32, 585593.
  • 78
    De Falco G, Comes F & Simone C (2006) pRb: master of differentiation. Coupling irreversible cell cycle withdrawal with induction of muscle-specific transcription. Oncogene 25, 52445249.
  • 79
    Parker MH, von Maltzahn J, Bakkar N, Al-Joubori B, Ishibashi J, Guttridge D & Rudnicki MA (2012) MyoD-dependent regulation of NF-kappaB activity couples cell-cycle withdrawal to myogenic differentiation. Skelet Muscle 2, 6, doi:10.1186/2044-5040-2-6.
  • 80
    Zhang P, Wong C, Liu D, Finegold M, Harper JW & Elledge SJ (1999) p21(CIP1) and p57(KIP2) control muscle differentiation at the myogenin step. Genes Dev 13, 213224.
  • 81
    Figliola R & Maione R (2004) MyoD induces the expression of p57Kip2 in cells lacking p21Cip1/Waf1: overlapping and distinct functions of the two cdk inhibitors. J Cell Physiol 200, 468475.
  • 82
    Wright KJ & Tjian R (2009) Wnt signaling targets ETO coactivation domain of TAF4/TFIID in vivo. Proc Natl Acad Sci USA 106, 5560.
  • 83
    O'Donnell KA, Wentzel EA, Zeller KI, Dang CV & Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839843.
  • 84
    Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V, Major F, Ferbeyre G & Chartrand P (2007) An E2F/miR-20a autoregulatory feedback loop. J Biol Chem 282, 21352143.
  • 85
    Nagel S, Venturini L, Przybylski GK, Grabarczyk P, Schmidt CA, Meyer C, Drexler HG, Macleod RA & Scherr M (2009) Activation of miR-17-92 by NK-like homeodomain proteins suppresses apoptosis via reduction of E2F1 in T-cell acute lymphoblastic leukemia. Leuk Lymphoma 50, 101108.
  • 86
    Tschop K, Conery AR, Litovchick L, Decaprio JA, Settleman J, Harlow E & Dyson N (2011) A kinase shRNA screen links LATS2 and the pRB tumor suppressor. Genes Dev 25, 814830.
  • 87
    Avruch J, Zhou D, Fitamant J, Bardeesy N, Mou F & Barrufet LR (2012) Protein kinases of the Hippo pathway: regulation and substrates. Semin Cell Dev Biol 23, 770784.
  • 88
    Pajcini KV, Corbel SY, Sage J, Pomerantz JH & Blau HM (2010) Transient inactivation of Rb and ARF yields regenerative cells from postmitotic mammalian muscle. Cell Stem Cell 7, 198213.
  • 89
    Deato MD & Tjian R (2008) An unexpected role of TAFs and TRFs in skeletal muscle differentiation: switching core promoter complexes. Cold Spring Harbor Symp Quant Biol 73, 217225.
  • 90
    Blais A, van Oevelen CJ, Margueron R, Acosta-Alvear D & Dynlacht BD (2007) Retinoblastoma tumor suppressor protein-dependent methylation of histone H3 lysine 27 is associated with irreversible cell cycle exit. J Cell Biol 179, 13991412.
  • 91
    Andres V & Walsh K (1996) Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. J Cell Biol 132, 657666.