• 1
    Huang YC, Grodsky NB, Kim TK & Colman RF (2004) Ligands of the Mn2+ bound to porcine mitochondrial NADP-dependent isocitrate dehydrogenase, as assessed by mutagenesis. Biochemistry 43, 28212828.
  • 2
    Aktas DF & Cook PF (2009) A lysine-tyrosine pair carries out acid–base chemistry in the metal ion-dependent pyridine dinucleotide-linked beta-hydroxyacid oxidative decarboxylases. Biochemistry 48, 35653577.
  • 3
    Imada K, Sato M, Tanaka N, Katsube Y, Matsuura Y & Oshima T (1991) Three-dimensional structure of a highly thermostable enzyme, 3-isopropylmalate dehydrogenase of Thermus thermophilus at 2.2 A resolution. J Mol Biol 222, 725738.
  • 4
    Wallon G, Kryger G, Lovett ST, Oshima T, Ringe D & Petsko GA (1997) Crystal structures of Escherichia coli and Salmonella typhimurium 3-isopropylmalate dehydrogenase and comparison with their thermophilic counterpart from Thermus thermophilus. J Mol Biol 266, 10161031.
  • 5
    Imada K, Inagaki K, Matsunami H, Kawaguchi H, Tanaka H, Tanaka N & Namba K (1998) Structure of 3-isopropylmalate dehydrogenase in complex with 3-isopropylmalate at 2.0 A resolution: the role of Glu88 in the unique substrate-recognition mechanism. Structure 6, 971982.
  • 6
    Hurley JH & Dean AM (1994) Structure of 3-isopropylmalate dehydrogenase in complex with NAD+: ligand-induced loop closing and mechanism for cofactor specificity. Structure 2, 10071016.
  • 7
    Tsuchiya D, Sekiguchi T & Takenaka A (1997) Crystal structure of 3-isopropylmalate dehydrogenase from the moderate facultative thermophile, Bacillus coagulans: two strategies for thermostabilization of protein structures. J Biochem (Tokyo) 122, 10921104.
  • 8
    Kadono S, Sakurai M, Moriyama H, Sato M, Hayashi Y, Oshima T & Tanaka N (1995) Ligand-induced changes in the conformation of 3-isopropylmalate dehydrogenase from Thermus thermophilus. J Biochem (Tokyo) 118, 745752.
  • 9
    Singh RK, Kefala G, Janowski R, Mueller-Dieckmann C, von Kries JP & Weiss MS (2005) The high-resolution structure of LeuB (Rv2995c) from Mycobacterium tuberculosis. J Mol Biol 346, 111.
  • 10
    Gráczer É, Merli A, Singh RK, Karuppasamy M, Závodszky P, Weiss MS & Vas M (2011) Atomic level description of the domain closure in a dimeric enzyme: Thermus thermophilus 3-isopropylmalate dehydrogenase. Mol BioSyst 7, 16461659.
  • 11
    Dean AM & Dvorak L (1995) The role of glutamate 87 in the kinetic mechanism of Thermus thermophilus isopropylmalate dehydrogenase. Protein Sci 4, 21562167.
  • 12
    Miyazaki K, Kakinuma K, Terasawa H & Oshima T (1993) Kinetic analysis on the substrate specificity of 3-isopropylmalate dehydrogenase. FEBS Lett 332, 3536.
  • 13
    Miyazaki K & Oshima T (1993) Tyr-139 in Thermus thermophilus 3-isopropylmalate dehydrogenase is involved in catalytic function. FEBS Lett 332, 3738.
  • 14
    Gutfreund H (1995) Transient kinetics of enzyme reactions. In Kinetics for the Life Sciences (Gutfreund H, ed.), pp. 138180. Cambridge University Press, Cambridge.
  • 15
    Barman TE, Bellamy SR, Gutfreund H, Halford SE & Lionne C (2006) The identification of chemical intermediates in enzyme catalysis by the rapid quench-flow technique. Cell Mol Life Sci 63, 25712583.
  • 16
    Hayward S (2004) Identification of specific interactions that drive ligand-induced closure in five enzymes with classic domain movements. J Mol Biol 339, 10011021.
  • 17
    Gerstein M & Echols N (2004) Exploring the range of protein flexibility, from a structural proteomics perspective. Curr Opin Chem Biol 8, 1419.
  • 18
    Vas M, Varga A & Gráczer É (2010) Insight into the mechanism of domain movements and their role in enzyme function: example of 3-phosphoglycerate kinase. Curr Protein Pept Sci 11, 118147.
  • 19
    Gráczer É, Konarev PV, Szimler T, Bacsó A, Bodonyi A, Svergun DI, Závodszky P & Vas M (2011) Essential role of the metal-ion in the IPM-assisted domain closure of 3-isopropylmalate dehydrogenase. FEBS Lett 585, 32973302.
  • 20
    Hajdú I, Szilágyi A, Kardos J & Závodszky P (2009) A link between hinge-bending domain motions and the temperature dependence of catalysis in 3-isopropylmalate dehydrogenase. Biophys J 96, 50035012.
  • 21
    Dalziel K & Egan RR (1972) The binding of oxidized coenzymes by glutamate dehydrogenase and the effects of glutarate and purine nucleotides. Biochem J 126, 975984.
  • 22
    Bentley P, Dickinson FM & Jones IG (1973) Purification and properties of rabbit muscle L-glycerol 3-phosphate dehydrogenase. Biochem J 135, 853859.
  • 23
    MacGibbon AK, Motion RL, Crow KE, Buckley PD & Blackwell LF (1979) Purification and properties of sheep-liver aldehyde dehydrogenases. Eur J Biochem 96, 585595.
  • 24
    Dickinson FM (1985) Studies on the mechanism of sheep liver cytosolic aldehyde dehydrogenase. Biochem J 225, 159165.
  • 25
    Ohkuri T & Yamagishi A (2007) The effects of mutations at position 253 on the thermostability of the Bacillus subtilis 3-isopropylmalate dehydrogenase subunit interface. J Biochem 141, 791797.
  • 26
    Gráczer E, Varga A, Melnik B, Semisotnov G, Závodszky P & Vas M (2009) Symmetrical refolding of protein domains and subunits: example of the dimeric two-domain 3-isopropylmalate dehydrogenases. Biochemistry 48, 11231134.
  • 27
    Forstner M, Berger C & Wallimann T (1999) Nucleotide binding to creatine kinase: an isothermal titration microcalorimetry study. FEBS Lett 461, 111114.
  • 28
    Millet O, Hudson RP & Kay LE (2003) The energetic cost of domain reorientation in maltose-binding protein as studied by NMR and fluorescence spectroscopy. Proc Natl Acad Sci USA 100, 1270012705.
  • 29
    Mamonova T, Yonkunas MJ & Kurnikova MG (2008) Energetics of the cleft closing transition and the role of electrostatic interactions in conformational rearrangements of the glutamate receptor ligand binding domain. Biochemistry 47, 1107711085.
  • 30
    Varga A, Szabó J, Flachner B, Gugolya Z, Vonderviszt F, Závodszky P & Vas M (2009) Thermodynamic analysis of substrate induced domain closure of 3-phosphoglycerate kinase. FEBS Lett 583, 36603664.
  • 31
    Geerlof A, Travers F, Barman T & Lionne C (2005) Perturbation of yeast 3-phosphoglycerate kinase reaction mixtures with ADP: transient kinetics of formation of ATP from bound 1,3-bisphosphoglycerate. Biochemistry 44, 1494814955.
  • 32
    Zerrad L, Merli A, Schroder GF, Varga A, Gráczer E, Pernot P, Round A, Vas M & Bowler MW (2011) A spring-loaded release mechanism regulates domain movement and catalysis in phosphoglycerate kinase. J Biol Chem 286, 1404014048.
  • 33
    Gráczer É, Varga A, Hajdú I, Melnik B, Szilágyi A, Semisotnov G, Závodszky P & Vas M (2007) Rates of unfolding, rather than refolding, determine thermal stabilities of thermophilic, mesophilic, and psychrotrophic 3-isopropylmalate dehydrogenases. Biochemistry 46, 1153611549.