SEARCH

SEARCH BY CITATION

References

  • 1
    Nickel W (2003) The mystery of nonclassical protein secretion. Eur J Biochem 270, 21092119.
  • 2
    Nickel W & Seedorf M (2008) Unconventional mechanisms of protein transport to the cell surface of eukaryotic cells. Annu Rev Cell Dev Biol 24, 287308.
  • 3
    Rubartelli A, Cozzolino F, Talio M & Sitia R (1990) A novel secretory pathway for interleukin-1β, a protein lacking a signal sequence. EMBO J 9, 15031510.
  • 4
    Cooper D & Barondes S (1990) Evidence for export of a muscle lectin from cytosol to extracellular matrix and for a novel secretory mechanism. J Cell Biol 110, 16811691.
  • 5
    Sriskanthadevan S, Ivanov I, Yang C & Siu C–H (2007) Novel functions and transport mechanism associated with the Ca2+-dependent cell adhesion molecule DdCAD–1 in Dictyostelium. In Recent Research Developments in Cell Biology (Pandalai SG, ed.), pp. 921. Research Signpost, Trivandrum, India.
  • 6
    Lin Z, Sriskanthadevan S, Huang H, Siu C-H & Yang D (2006) Solution structures of the adhesion molecule DdCAD-1 reveal new insights into Ca2+-dependent cell–cell adhesion. Nat Struct Mol Biol 13, 10161022.
  • 7
    Wong E, Yang C, Wang J, Fuller D, Loomis WF & Siu C-H (2002) Disruption of the gene encoding the cell adhesion molecule DdCAD-1 leads to aberrant cell sorting and cell-type proportioning during Dictyostelium development. Development 129, 38393850.
  • 8
    Sriskanthadevan S, Zhu Y, Manoharan K, Yang C & Siu C-H (2011) The cell adhesion molecule DdCAD-1 regulates morphogenesis through differential spatiotemporal expression in Dictyostelium discoideum. Development 138, 24872497.
  • 9
    Sesaki H, Wong E & Siu C-H (1997) The cell adhesion molecule DdCAD-1 in Dictyostelium is targeted to the cell surface by a nonclassical transport pathway involving contractile vacuoles. J Cell Biol 138, 939951.
  • 10
    Sriskanthadevan S, Lee T, Lin Z, Yang D & Siu C-H (2009) The cell adhesion molecule DdCAD-1 is imported into contractile vacuoles by membrane invagination in a Ca2+- and conformation-dependent manner. J Biol Chem 284, 3637736386.
  • 11
    Du F, Edwards K, Shen Z, Sun B, De Lozanne A, Briggs S & Firtel RA (2008) Regulation of contractile vacuole formation and activity in Dictyostelium. EMBO J 27, 20642076.
  • 12
    Zhu Q & Clarke M (1992) Association of calmodulin and an unconventional myosin with the contractile vacuole complex of Dictyostelium discoideum. J Cell Sci 118, 347358.
  • 13
    Zhu Q, Liu T & Clarke M (1993) Calmodulin and the contractile vacuole complex in mitotic cells of Dictyostelium discoideum. J Cell Sci 104, 11191127.
  • 14
    Marshak DR, Clarke M, Roberts DM & Watterson DM (1984) Structural and functional properties of calmodulin from the eukaryotic microorganism Dictyostelium discoideum. Biochemistry 23, 28912899.
  • 15
    Catalano A & O'Day DH (2008) Calmodulin-binding proteins in the model organism Dictyostelium: a complete and critical review. Cell Signal 20, 277291.
  • 16
    Rhoads AR & Friedberg F (1997) Sequence motifs for calmodulin recognition. FASEB J 11, 331340.
  • 17
    Enrich C, Jackle S & Havel RJ (1996) The polymeric immunoglobulin receptor is the major calmodulin-binding protein in an endosome fraction from rat liver enriched in recycling receptor. Hepatology 24, 226232.
  • 18
    Nielsen TB, Field JB & Dedman JR (1987) Association of calmodulin with lysosomes. J Cell Sci 87, 327336.
  • 19
    Pryor PR, Mullock BM, Bright NA, Gray SR & Luzio JP (2000) The role of intraorganellar Ca2+ in late endosome–lysosome heterotypic fusion and in the reformation of lysosomes from hybrid organelles. J Cell Biol 149, 10531062.
  • 20
    Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I & Schreiber SL (1991) Calcineurin is a common target of cyclophilin–cyclosporin A and FKBP–FK506 complexes. Cell 66, 807815.
  • 21
    O'Day DH (2003) CaMBOT: profiling and characterizing calmodulin-binding proteins. Cell Signal 15, 347354.
  • 22
    Peters C & Mayer A (1998) Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature 396, 575580.
  • 23
    Uttenweiler A, Schwarz H & Mayer A (2005) Microautophagic vacuole invagination requires calmodulin in a Ca2+-independent function. J Biol Chem 280, 3328933297.
  • 24
    Osawa M, Swindells MB, Tanikawa J, Tanaka T, Mase T, Furuya T & Ikura M (1998) Solution structure of dalmodulin–W-7 complex: the basis of diversity in molecular recognition. J Mol Biol 276, 165176.
  • 25
    Peters C, Bayer MJ, Buhler S, Andersen JS, Mann M & Mayer A (2001) Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 409, 581588.
  • 26
    Malchow D, Lusche DF, Schlatterer C, Lozanne AD & Muller-Taubenberger A (2006) The contractile vacuole in Ca2+-regulation in Dictyostelium: its essential function for cAMP-induced Ca2+-influx. BMC Dev Biol 6, 3138.
  • 27
    Chigri F, Harmann F, Stamp A, Stammers DK, Balter B, Soll J & Vothknecht UC (2006) Calcium regulation of chloroplast protein translocation is mediated by calmodulin binding to Tic32. Proc Natl Acad Sci USA 103, 1605116056.
  • 28
    Ikura M, Clore GM, Gronenborn AM, Zhu G, Klee CB & Bax A (1992) Solution structure of a calmodulin–target peptide complex by multidimensional NMR. Science 256, 632638.
  • 29
    Meador WE, Means AR & Quiocho FA (1993) Modulation of calmodulin plasticity in molecular recognition on the basis of X-ray structures. Science 262, 17181721.
  • 30
    Muller O, Sattler T, Flotenmeyer M, Schwarz H, Plattner H & Mayer A (2000) Autophagic tubes: vacuolar invaginations involved in lateral membrane sorting and inverse vesicle budding. J Cell Biol 151, 519528.
  • 31
    Lin Z, Huang H, Siu C-H & Yang D (2004) 1H, 13C and 15N resonance assignments of Ca2+-free DdCAD-1: a Ca2+-dependent cell–cell adhesion molecule. J Biomol NMR 3, 375376.
  • 32
    Fok AK, Clarke M, Ma L & Allen RD (1993) Vacuolar H+-ATPase of Dictyostelium discoideum. A monoclonal antibody study. J Cell Sci 106, 11031113.
  • 33
    Kinseth MA, Anjard C, Fuller D, Guizzunti G, Loomis WF & Malhotra V (2007) The Golgi-associated protein GRASP is required for unconventional protein secretion during development. Cell 130, 524534.