SEARCH

SEARCH BY CITATION

References

  • 1
    Martin K, Morlin G, Smith A, Nordyke A, Eisenstark A & Golomb M (1998) The tryptophanase gene cluster of Haemophilus influenzae type b: evidence for horizontal gene transfer. J Bacteriol 180, 107118.
  • 2
    Anyanful A, Dolan-Livengood JM, Lewis T, Sheth S, Dezalia MN, Sherman MA, Kalman LV, Benian GM & Kalman D (2005) Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene. Mol Microbiol 57, 9881007.
  • 3
    Snell EE (1975) Tryptophanase: structure, catalytic activities, and mechanism of action. Adv Enzymol Relat Areas Mol Biol 42, 287333.
  • 4
    Wang D, Ding X & Rather PN (2001) Indole can act as an extracellular signal in Escherichia coli. J Bacteriol 183, 42104216.
  • 5
    Di Martino P, Merieau A, Phillips R, Orange N & Hulen C (2002) Isolation of an Escherichia coli strain mutant unable to form biofilm on polystyrene and to adhere to human pneumocyte cells: involvement of tryptophanase. Can J Microbiol 48, 132137.
  • 6
    Di Martino P, Fursy R, Bret L, Sundararaju B & Phillips RS (2003) Indole can act as an extracellular signal to regulate biofilm formation in Escherichia coli and in other indole-producing bacteria. Can J Microbiol 49, 443449.
  • 7
    Lee HH, Molla MN, Cantor CR & Collins JJ (2010) Bacterial charity work leads to population-wide resistance. Nature 467, 8285.
  • 8
    Hirakawa H, Hayashi-Nishino M, Yamaguchi A & Nishino K (2010) Indole enhances acid resistance in Escherichia coli. Microb Pathog 49, 9094.
  • 9
    Field CM & Summers DK (2012) Indole inhibition of ColE1 replication contributes to stable plasmid maintenance. Plasmid 67, 8894.
  • 10
    Roy M, Miles EW, Phillips RS & Dunn MF (1988) Detection and identification of intermediates in the reactions of tryptophan synthase with oxindolyl-l-alanine and 2,3-dihydro-l-tryptophan via rapid-scanning and single wavelength stopped-flow studies. Biochemistry 27, 86618669.
  • 11
    Phillips RS (1989) The mechanism of tryptophan indole-lyase: insights from pre-steady-state kinetics and substrate and solvent isotope effects. J Am Chem Soc 111, 727730.
  • 12
    Phillips RS, Bender SL, Brzovic P & Dunn MF (1990) The mechanism of binding of substrate analogues to tryptophan indole-lyase: studies using rapid-scanning and single wavelength stopped-flow spectrophotometry. Biochemistry 29, 86088614.
  • 13
    Phillips RS (1991) The reaction of indole and benzimidazole with amino acid complexes of E. coli tryptophan indole-lyase: detection of a new reaction intermediate. Biochemistry 30, 59275934.
  • 14
    Lee M & Phillips RS (1995) The mechanism of Escherichia coli tryptophan indole-lyase: substituent effects on steady-state and pre-steady-state kinetic parameters for aryl-substituted tryptophan derivatives. Bioorg Med Chem 3, 195205.
  • 15
    Sloan MS & Phillips RS (1996) Effects of α-deuteration and of aza and thia analogs of l-tryptophan on formation of intermediates in the reaction of Escherichia coli tryptophan indole-lyase. Biochemistry 35, 1616516173.
  • 16
    Phillips RS, Sundararju B & Faleev NG (2000) Proton transfer and carbon–carbon bond cleavage in the elimination of indole catalyzed by Escherichia coli tryptophan indole-lyase. J Am Chem Soc 122, 11081114.
  • 17
    Phillips RS, Miles EW & Cohen LA (1984) Interactions of tryptophan synthase, tryptophanase and pyridoxal phosphate with oxindolyl-l-alanine and 2,3-dihydro-l-tryptophan: support for an indolenine intermediate in tryptophan metabolism. Biochemistry 23, 62286234.
  • 18
    Phillips RS, Miles EW & Cohen LA (1985) Differential inhibition of tryptophan synthase and of tryptophanase by the two diastereoisomers of 2,3-dihydro-l-tryptophan: implications for the stereochemistry of the reaction intermediates. J Biol Chem 260, 1466514670.
  • 19
    Phillips RS, Johnson N & Kamath AV (2002) Formation in vitro of hybrid dimers of H463F and Y74F mutant Escherichia coli tryptophan indole-lyase rescues activity with l-tryptophan. Biochemistry 41, 40124019.
  • 20
    Demidkina TV, Zakomirdina LN, Kulikova VV, Dementieva IS, Faleev NG, Ronda L, Mozzarelli A, Gollnick PD & Phillips RS (2003) Role of aspartate-133 and histidine-458 in the mechanism of tryptophan indole-lyase from Proteus vulgaris. Biochemistry 42, 1116111169.
  • 21
    Zhang L-H, Kauffman GS, Pesti JA & Yin J (1997) Rearrangement of Nα-protected l-asparagines with iodosobenzene diacetate. A practical route to β-amino-l-alanine derivatives. J Org Chem 62, 69186920.
  • 22
    Wiejak S, Masiukiewicz E & Rzeszotarska B (2001) Improved scalable syntheses of mono- and bis-urethane derivatives of ornithine. Chem Pharm Bull (Tokyo) 49, 11891191.
  • 23
    Mamalis P, Petrow V & Sturgeon B (1950) Some benziminazolylalanines. J Chem Soc 1950, 16001603.
  • 24
    Thibodeaux CJ & Liu HW (2011) Mechanistic studies of 1-aminocyclopropane-1-carboxylate deaminase: characterization of an unusual pyridoxal 5′-phosphate-dependent reaction. Biochemistry 50, 19501962.
  • 25
    Mizuguchi H, Hayashi H, Okada K, Miyahara I, Hirotsu K & Kagamiyama H (2001) Strain is more important than electrostatic interaction in controlling the pKa of the catalytic group in aspartate aminotransferase. Biochemistry 40, 353360.
  • 26
    Lima S, Sundararaju B, Huang C, Khristoforov R, Momany C & Phillips RS (2009) The crystal structure of the Pseudomonas dacunhae aspartate-β–decarboxylase dodecamer reveals an unknown oligomeric assembly for a pyridoxal-5′–phosphate-dependent enzyme. J Mol Biol 388, 98108.
  • 27
    Phillips RS, Lima S, Khristoforov R & Sudararaju B (2010) Insights into the mechanism of Pseudomonas dacunhae aspartate β-decarboxylase from rapid-scanning stopped-flow kinetics. Biochemistry 49, 50665073.
  • 28
    Kiick DM & Phillips RS (1988) Mechanistic deductions from multiple kinetic and solvent deuterium isotope effects and pH studies of pyridoxal phosphate dependent carbon–carbon lyases: Escherichia coli tryptophan indole-lyase. Biochemistry 27, 73397344.
  • 29
    Milić D, Demidkina TV, Faleev NG, Phillips RS, Matković-Čalogović D & Antson AA (2011) Crystallographic snapshots of tyrosine phenol-lyase show that substrate strain plays a role in C-C bond cleavage. J Am Chem Soc 133, 1646816476.
  • 30
    Phillips RS, Ravichandran K & Von Tersch RL (1989) Synthesis of l-tyrosine from phenol and S-(o-nitrophenyl)-l-cysteine catalyzed by tyrosine phenol-lyase. Enzyme Microb Technol 11, 8083.
  • 31
    Dua RK, Taylor EW & Phillips RS (1993) S–aryl-l–cysteine S, S–dioxides: design and evaluation of a new class of mechanism based inhibitors of kynureninase. J Am Chem Soc 115, 12641270.
  • 32
    Heiss C, Anderson J & Phillips RS (2003) Differential effects of bromination on substrates and inhibitors of kynureninase from Pseudomonas fluorescens. Org Biomol Chem 1, 288295.
  • 33
    Phillips RS & Gollnick PD (1989) Evidence that cysteine-298 is in the active site of tryptophan indole-lyase. J Biol Chem 254, 1062710632.
  • 34
    Kagamiyama H, Wada H, Matsubara H & Snell EE (1972) The chemical structure of tryptophanase from Escherichia coli. II. The structure of tryptophanase monomer. J Biol Chem 247, 15711575.
  • 35
    Morino Y & Snell EE (1970) Tryptophanase (Escherichia coli B). Methods Enzymol 17A, 439446.
  • 36
    Suelter CH, Wang J & Snell EE (1976) Direct spectrophotometric assay of tryptophanase. FEBS Lett 66, 230232.
  • 37
    Cleland WW (1979) Statistical analysis of enzyme kinetic data. Methods Enzymol 63, 103138.
  • 38
    Matheson IBC (1987) The method of successive integration: a general technique for recasting kinetic equations in a readily soluble form which is linear in the coefficients and sufficiently rapid for real time instrumental use. Anal Instrum 16, 345373.