SEARCH

SEARCH BY CITATION

References

  • 1
    Uren AG, O'Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV & Dixit VM (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6, 961967.
  • 2
    Rawlings ND, Barrett AJ & Bateman A (2012) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 40, D343D350.
  • 3
    Szallies A, Kubata BK & Duszenko M (2002) A metacaspase of Trypanosoma brucei causes loss of respiration competence and clonal death in the yeast Saccharomyces cerevisiae. FEBS Lett 517, 144150.
  • 4
    Mottram JC, Helms MJ, Coombs GH & Sajid M (2003) Clan CD cysteine peptidases of parasitic protozoa. Trends Parasitol 19, 182187.
  • 5
    Proto WR, Castanys-Munoz E, Black A, Tetley L, Moss CX, Juliano L, Coombs GH & Mottram JC (2011) Trypanosoma brucei metacaspase 4 is a pseudopeptidase and a virulence factor. J Biol Chem 286, 3991439925.
  • 6
    Proto WR, Coombs GH & Mottram JC (2012) Cell death in parasitic protozoa: regulated or incidental? Nat Rev Microbiol 11, 5866.
  • 7
    Helms MJ, Ambit A, Appleton P, Tetley L, Coombs GH & Mottram JC (2006) Bloodstream form Trypanosoma brucei depend upon multiple metacaspases associated with RAB11-positive endosomes. J Cell Sci 119, 11051117.
  • 8
    Vercammen D, Declercq W, Vandenabeele P & Van Breusegem F (2007) Are metacaspases caspases? J Cell Biol 179, 375380.
  • 9
    Moss CX, Westrop GD, Juliano L, Coombs GH & Mottram JC (2007) Metacaspase 2 of Trypanosoma brucei is a calcium-dependent cysteine peptidase active without processing. FEBS Lett 581, 56355639.
  • 10
    Laverriere M, Cazzulo JJ & Alvarez VE (2012) Antagonic activities of Trypanosoma cruzi metacaspases affect the balance between cell proliferation, death and differentiation. Cell Death Differ 19, 13581369.
  • 11
    Gonzalez IJ, Desponds C, Schaff C, Mottram JC & Fasel N (2007) Leishmania major metacaspase can replace yeast metacaspase in programmed cell death and has arginine-specific cysteine peptidase activity. Int J Parasitol 37, 161172.
  • 12
    Vercammen D, Van de Cotte B, De Jaeger G, Eeckhout D, Casteels P, Vandepoele K, Vandenberghe I, Van Beeumen J, Inze D & Van Breusegem F (2004) Type II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine. J Biol Chem 279, 4532945336.
  • 13
    Watanabe N & Lam E (2005) Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast. J Biol Chem 280, 1469114699.
  • 14
    Bozhkov PV, Suarez MF, Filonova LH, Daniel G, Zamyatnin AA Jr, Rodriguez-Nieto S, Zhivotovsky B & Smertenko A (2005) Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis. Proc Natl Acad Sci USA 102, 1446314468.
  • 15
    Pop C & Salvesen GS (2009) Human caspases: activation, specificity, and regulation. J Biol Chem 284, 2177721781.
  • 16
    Watanabe N & Lam E (2011) Calcium-dependent activation and autolysis of Arabidopsis metacaspase 2d. J Biol Chem 286, 1002710040.
  • 17
    McLuskey K, Rudolf J, Proto WR, Isaacs NW, Coombs GH, Moss CX & Mottram JC (2012) Crystal structure of a Trypanosoma brucei metacaspase. Proc Natl Acad Sci USA 109, 74697474.
  • 18
    Wong AH, Yan C & Shi Y (2012) Crystal structure of the yeast metacaspase Yca1. J Biol Chem 287, 2925129259.
  • 19
    Aravind L & Koonin EV (2002) Classification of the caspase-hemoglobinase fold: detection of new families and implications for the origin of the eukaryotic separins. Proteins 46, 355367.
  • 20
    Yu JW, Jeffrey PD, Ha JY, Yang X & Shi Y (2011) Crystal structure of the mucosa-associated lymphoid tissue lymphoma translocation 1 (MALT1) paracaspase region. Proc Natl Acad Sci USA 108, 2100421009.
  • 21
    Garcia-Calvo M, Peterson EP, Rasper DM, Vaillancourt JP, Zamboni R, Nicholson DW & Thornberry NA (1999) Purification and catalytic properties of human caspase family members. Cell Death Differ 6, 362369.
  • 22
    Stennicke HR & Salvesen GS (1997) Biochemical characteristics of caspases-3, -6, -7, and -8. J Biol Chem 272, 2571925723.
  • 23
    Madeo F, Herker E, Maldener C, Wissing S, Lachelt S, Herlan M, Fehr M, Lauber K, Sigrist SJ, Wesselborg S et al. (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9, 911917.
  • 24
    Wei Y, Fox T, Chambers SP, Sintchak J, Coll JT, Golec JM, Swenson L, Wilson KP & Charifson PS (2000) The structures of caspases-1, -3, -7 and -8 reveal the basis for substrate and inhibitor selectivity. Chem Biol 7, 423432.
  • 25
    Eichinger A, Beisel HG, Jacob U, Huber R, Medrano FJ, Banbula A, Potempa J, Travis J & Bode W (1999) Crystal structure of gingipain R: an Arg-specific bacterial cysteine proteinase with a caspase-like fold. EMBO J 18, 54535462.
  • 26
    Shen A, Lupardus PJ, Albrow VE, Guzzetta A, Powers JC, Garcia KC & Bogyo M (2009) Mechanistic and structural insights into the proteolytic activation of Vibrio cholerae MARTX toxin. Nat Chem Biol 5, 469478.
  • 27
    Vercammen D, Belenghi B, Van de Cotte B, Beunens T, Gavigan JA, De Rycke R, Brackenier A, Inze D, Harris JL & Van Breusegem F (2006) Serpin1 of Arabidopsis thaliana is a suicide inhibitor for metacaspase 9. J Mol Biol 364, 625636.
  • 28
    Suzuki K, Hata S, Kawabata Y & Sorimachi H (2004) Structure, activation, and biology of calpain. Diabetes 53(Suppl 1), S12S18.
  • 29
    Stojdl DF & Clarke MW (1996) Trypanosoma brucei: analysis of cytoplasmic Ca2+ during differentiation of bloodstream stages in vitro. Exp Parasitol 83, 134146.
  • 30
    Goll DE, Thompson VF, Taylor RG & Zalewska T (1992) Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin? BioEssays 14, 549556.
  • 31
    Hirata IC, Sedenho Cezari MH, Nakaie CR, Boshcov P, Ito AS, Juliano MA & Juliano L (1994) Internally quenched fluorogenic protease substrates: solid-phase synthesis and fluorescence spectroscopy of peptides containing ortho-aminobenzoyl/dinitrophenyl groups as donor–acceptor pairs. Lett Pept Sci 1994, 299308.
  • 32
    Araujo MC, Melo RL, Cesari MH, Juliano MA, Juliano L & Carmona AK (2000) Peptidase specificity characterization of C- and N-terminal catalytic sites of angiotensin I-converting enzyme. Biochemistry 39, 85198525.
  • 33
    Wilkinson GN (1961) Statistical estimations in enzyme kinetics. Biochem J 80, 324332.
  • 34
    Leatherbarrow RJ (2001) Grafit Version 5. Erithacus Software Ltd, Horley, UK.
  • 35
    Machado MF, Rioli V, Dalio FM, Castro LM, Juliano MA, Tersariol IL, Ferro ES, Juliano L & Oliveira V (2007) The role of Tyr605 and Ala607 of thimet oligopeptidase and Tyr606 and Gly608 of neurolysin in substrate hydrolysis and inhibitor binding. Biochem J 404, 279288.
  • 36
    Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD & Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112, 531552.
  • 37
    Velankar S, Alhroub Y, Best C, Caboche S, Conroy MJ, Dana JM, Fernandez Montecelo MA, Van Ginkel G, Golovin A, Gore SP et al. (2012) PDBe: Protein Data Bank in Europe. Nucleic Acids Res 40, D445D452.
  • 38
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS & Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30, 27852791.
  • 39
    Trott O & Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31, 455461.
  • 40
    Krissinel E & Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr 60, 22562268.
  • 41
    Emsley P & Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 21262132.
  • 42
    Baker NA, Sept D, Joseph S, Holst MJ & McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98, 1003710041.
  • 43
    DeLano WL (2002) The PyMOL Molecular Graphic System. (Schrodinger, LLC, San Carlos, CA), version 1.2r3pre.