SEARCH

SEARCH BY CITATION

References

  • 1
    Selkoe D, Mandelkow E & Holtzman D (2012) Deciphering Alzheimer disease. Cold Spring Harb Perspect Med 2, a011460.
  • 2
    Weingarten MD, Lockwood AH, Hwo SY & Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA 72, 18581862.
  • 3
    Hoogenraad CC & Bradke F (2009) Control of neuronal polarity and plasticity – a renaissance for microtubules? Trends Cell Biol 19, 669676.
  • 4
    Caceres A, Ye B & Dotti CG (2012) Neuronal polarity: demarcation, growth and commitment. Curr Opin Cell Biol 24, 547553.
  • 5
    de Forges H, Bouissou A & Perez F (2012) Interplay between microtubule dynamics and intracellular organization. Int J Biochem Cell Biol 44, 266274.
  • 6
    Mandelkow EM & Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2, a006247.
  • 7
    Ittner LM & Götz J (2011) Amyloid–β and tau – a toxic pas de deux in Alzheimer's disease. Nat Rev Neurosci 12, 6572.
  • 8
    Morris M, Maeda S, Vossel K & Mucke L (2011) The many faces of tau. Neuron 70, 410426.
  • 9
    Josephs KA, Hodges JR, Snowden JS, Mackenzie IR, Neumann M, Mann DM & Dickson DW (2011) Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol 122, 137153.
  • 10
    Braak H & Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82, 239259.
  • 11
    Josephs KA (2008) Frontotemporal dementia and related disorders: deciphering the enigma. Ann Neurol 64, 414.
  • 12
    Eckermann K, Mocanu MM, Khlistunova I, Biernat J, Nissen A, Hofmann A, Schonig K, Bujard H, Haemisch A, Mandelkow E et al. (2007) The β–propensity of Tau determines aggregation and synaptic loss in inducible mouse models of tauopathy. J Biol Chem 282, 3175531765.
  • 13
    Sydow A, Van der Jeugd A, Zheng F, Ahmed T, Balschun D, Petrova O, Drexler D, Zhou L, Rune G, Mandelkow E et al. (2011) Tau-induced defects in synaptic plasticity, learning, and memory are reversible in transgenic mice after switching off the toxic Tau mutant. J Neurosci 31, 25112525.
  • 14
    Van der Jeugd A, Hochgrafe K, Ahmed T, Decker JM, Sydow A, Hofmann A, Wu D, Messing L, Balschun D, D'Hooge R et al. (2012) Cognitive defects are reversible in inducible mice expressing pro-aggregant full-length human Tau. Acta Neuropathol 123, 787805.
  • 15
    Mocanu MM, Nissen A, Eckermann K, Khlistunova I, Biernat J, Drexler D, Petrova O, Schonig K, Bujard H, Mandelkow E et al. (2008) The potential for β–structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy. J Neurosci 28, 737748.
  • 16
    van Swieten JC, Bronner IF, Azmani A, Severijnen LA, Kamphorst W, Ravid R, Rizzu P, Willemsen R & Heutink P (2007) The ΔK280 mutation in MAP tau favors exon 10 skipping in vivo. J Neuropathol Exp Neurol 66, 1725.
  • 17
    von Bergen M, Barghorn S, Li L, Marx A, Biernat J, Mandelkow EM & Mandelkow E (2001) Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local β–structure. J Biol Chem 276, 4816548174.
  • 18
    Khlistunova I, Pickhardt M, Biernat J, Wang Y, Mandelkow EM & Mandelkow E (2007) Inhibition of tau aggregation in cell models of tauopathy. Curr Alzheimer Res 4, 544546.
  • 19
    Baron U, Freundlieb S, Gossen M & Bujard H (1995) Co-regulation of two gene activities by tetracycline via a bidirectional promoter. Nucleic Acids Res 23, 36053606.
  • 20
    Mayford M, Bach ME, Huang YY, Wang L, Hawkins RD & Kandel ER (1996) Control of memory formation through regulated expression of a CaMKII transgene. Science 274, 16781683.
  • 21
    Jaworski T, Dewachter I, Seymour CM, Borghgraef P, Devijver H, Kugler S & Van Leuven F (2010) Alzheimer's disease: old problem, new views from transgenic and viral models. Biochim Biophys Acta 1802, 808818.
  • 22
    Schindowski K, Bretteville A, Leroy K, Begard S, Brion JP, Hamdane M & Buee L (2006) Alzheimer's disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am J Pathol 169, 599616.
  • 23
    Gossen M & Bujard H (2002) Studying gene function in eukaryotes by conditional gene inactivation. Annu Rev Genet 36, 153173.
  • 24
    Hochgräfe K & Mandelkow EM (2012) Making the brain glow: in vivo bioluminescence imaging to study neurodegeneration. Mol Neurobiol, doi:10.1007/s12035-012-8379-1.
  • 25
    Jicha GA, Berenfeld B & Davies P (1999) Sequence requirements for formation of conformational variants of tau similar to those found in Alzheimer's disease. J Neurosci Res 55, 713723.
  • 26
    Ferrone FA, Hofrichter J & Eaton WA (1985) Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism. J Mol Biol 183, 611631.
  • 27
    Frost B & Diamond MI (2010) Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci 11, 155159.
  • 28
    Barghorn S & Mandelkow E (2002) Toward a unified scheme for the aggregation of tau into Alzheimer paired helical filaments. Biochemistry 41, 1488514896.
  • 29
    Jeganathan S, von Bergen M, Brutlach H, Steinhoff HJ & Mandelkow E (2006) Global hairpin folding of tau in solution. Biochemistry 45, 22832293.
  • 30
    Gustke N, Trinczek B, Biernat J, Mandelkow EM & Mandelkow E (1994) Domains of tau protein and interactions with microtubules. Biochemistry 33, 95119522.
  • 31
    Ignowski JM & Schaffer DV (2004) Kinetic analysis and modeling of firefly luciferase as a quantitative reporter gene in live mammalian cells. Biotechnol Bioeng 86, 827834.
  • 32
    Price JC, Guan S, Burlingame A, Prusiner SB & Ghaemmaghami S (2010) Analysis of proteome dynamics in the mouse brain. Proc Natl Acad Sci USA 107, 1450814513.
  • 33
    Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11, 4760.
  • 34
    D'Hooge R, Lullmann-Rauch R, Beckers T, Balschun D, Schwake M, Reiss K, von Figura K & Saftig P (2005) Neurocognitive and psychotiform behavioral alterations and enhanced hippocampal long-term potentiation in transgenic mice displaying neuropathological features of human alpha-mannosidosis. J Neurosci 25, 65396549.
  • 35
    Andersen P, Bliss TV & Skrede KK (1971) Lamellar organization of hippocampal pathways. Exp Brain Res 13, 222238.
  • 36
    Hurtado DE, Molina-Porcel L, Iba M, Aboagye AK, Paul SM, Trojanowski JQ & Lee VM (2010) Aβ accelerates the spatiotemporal progression of tau pathology and augments tau amyloidosis in an Alzheimer mouse model. Am J Pathol 177, 19771988.
  • 37
    de Calignon A, Polydoro M, Suarez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, Pitstick R, Sahara N, Ashe KH, Carlson GA et al. (2012) Propagation of tau pathology in a model of early Alzheimer's disease. Neuron 73, 685697.
  • 38
    Harris JA, Koyama A, Maeda S, Ho K, Devidze N, Dubal DB, Yu GQ, Masliah E & Mucke L (2012) Human P301L-mutant tau expression in mouse entorhinal–hippocampal network causes tau aggregation and presynaptic pathology but no cognitive deficits. PLoS One 7, e45881.
  • 39
    Liu L, Drouet V, Wu JW, Witter MP, Small SA, Clelland C & Duff K (2012) Trans-synaptic spread of tau pathology in vivo. PLoS One 7, e31302.
  • 40
    Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M et al. (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11, 909913.
  • 41
    Iba M, Guo JL, McBride JD, Zhang B, Trojanowski JQ & Lee VM (2013) Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer's-like tauopathy. J Neurosci 33, 10241037.
  • 42
    Karch CM, Jeng AT & Goate AM (2012) Extracellular Tau levels are influenced by variability in Tau that is associated with tauopathies. J Biol Chem 287, 4275142762.
  • 43
    Aguzzi A & Rajendran L (2009) The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64, 783790.
  • 44
    Gorlovoy P, Larionov S, Pham TT & Neumann H (2009) Accumulation of tau induced in neurites by microglial proinflammatory mediators. FASEB J 23, 25022513.
  • 45
    Binder LI, Frankfurter A & Rebhun LI (1985) The distribution of tau in the mammalian central nervous system. J Cell Biol 101, 13711378.
  • 46
    Brion JP, Guilleminot J, Couchie D, Flament-Durand J & Nunez J (1988) Both adult and juvenile tau microtubule-associated proteins are axon specific in the developing and adult rat cerebellum. Neuroscience 25, 139146.
  • 47
    Brion JP, Guilleminot J & Nunez J (1988) Dendritic and axonal distribution of the microtubule-associated proteins MAP2 and tau in the cerebellum of the nervous mutant mouse. Brain Res Dev Brain Res 44, 221232.
  • 48
    Kowall NW & Kosik KS (1987) Axonal disruption and aberrant localization of tau protein characterize the neuropil pathology of Alzheimer's disease. Ann Neurol 22, 639643.
  • 49
    Götz J, Ittner LM & Kins S (2006) Do axonal defects in tau and amyloid precursor protein transgenic animals model axonopathy in Alzheimer's disease? J Neurochem 98, 9931006.
  • 50
    Thies E & Mandelkow EM (2007) Missorting of tau in neurons causes degeneration of synapses that can be rescued by the kinase MARK2/Par–1. J Neurosci 27, 28962907.
  • 51
    Zempel H, Thies E, Mandelkow E & Mandelkow EM (2010) Abeta oligomers cause localized Ca2+ elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci 30, 1193811950.
  • 52
    Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, Pitstick R, Carlson GA, Lanier LM, Yuan LL et al. (2010) Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68, 10671081.
  • 53
    Krüger U, Wang Y, Kumar S & Mandelkow EM (2012) Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiol Aging 33, 22912305.
  • 54
    Pickhardt M, Larbig G, Khlistunova I, Coksezen A, Meyer B, Mandelkow EM, Schmidt B & Mandelkow E (2007) Phenylthiazolyl-hydrazide and its derivatives are potent inhibitors of tau aggregation and toxicity in vitro and in cells. Biochemistry 46, 1001610023.
  • 55
    Bulic B, Pickhardt M, Mandelkow EM & Mandelkow E (2010) Tau protein and tau aggregation inhibitors. Neuropharmacology 59, 276289.
  • 56
    Sydow A, Van der Jeugd A, Zheng F, Ahmed T, Balschun D, Petrova O, Drexler D, Zhou L, Rune G, Mandelkow E et al. (2011) Reversibility of Tau-related cognitive defects in a regulatable FTD mouse model. J Mol Neurosci 45, 432437.