SEARCH

SEARCH BY CITATION

References

  • 1
    Teicher BA, Ara G, Herbst R, Palombella VJ & Adams J (1999) The proteasome inhibitor PS-341 in cancer therapy. Clin Cancer Res 5, 26382645.
  • 2
    Kuhn DJ, Chen Q, Voorhees PM, Strader JS, Shenk KD, Sun CM, Demo SD, Bennett MK, van Leeuwen FW, Chanan-Khan AA et al. (2007) Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood 110, 32813290.
  • 3
    Moreau P, Richardson PG, Cavo M, Orlowski RZ, San Miguel JF, Palumbo A & Harousseau JL (2012) Proteasome inhibitors in multiple myeloma: 10 years later. Blood 120, 947959.
  • 4
    Sterz J, von Metzler I, Hahne JC, Lamottke B, Rademacher J, Heider U, Terpos E & Sezer O (2008) The potential of proteasome inhibitors in cancer therapy. Expert Opin Investig Drugs 17, 879895.
  • 5
    Lawasut P, Chauhan D, Laubach J, Hayes C, Fabre C, Maglio M, Mitsiades C, Hideshima T, Anderson KC & Richardson PG (2012) New proteasome inhibitors in myeloma. Curr Hematol Malig Rep 7, 258266.
  • 6
    Fribley A & Wang CY (2006) Proteasome inhibitor induces apoptosis through induction of endoplasmic reticulum stress. Cancer Biol Ther 5, 745748.
  • 7
    Wu WK, Cho CH, Lee CW, Wu K, Fan D, Yu J & Sung JJ (2010) Proteasome inhibition: a new therapeutic strategy to cancer treatment. Cancer Lett 293, 1522.
  • 8
    Jura J, Skalniak L & Koj A (2012) Monocyte chemotactic protein-1-induced protein-1 (MCPIP1) is a novel multifunctional modulator of inflammatory reactions. Biochim Biophys Acta 1823, 19051913.
  • 9
    Liang J, Wang J, Azfer A, Song W, Tromp G, Kolattukudy PE & Fu M (2008) A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages. J Biol Chem 283, 63376346.
  • 10
    Liang J, Song W, Tromp G, Kolattukudy PE & Fu M (2008) Genome-wide survey and expression profiling of CCCH-zinc finger family reveals a functional module in macrophage activation. PLoS One 3, e2880.
  • 11
    Younce CW, Azfer A & Kolattukudy PE (2009) MCP-1 (monocyte chemotactic protein-1)-induced protein, a recently identified zinc finger protein, induces adipogenesis in 3T3-L1 pre-adipocytes without peroxisome proliferator-activated receptor gamma. J Biol Chem 284, 2762027628.
  • 12
    Vrotsos EG, Kolattukudy PE & Sugaya K (2009) MCP-1 involvement in glial differentiation of neuroprogenitor cells through APP signaling. Brain Res Bull 79, 97103.
  • 13
    Wang K, Niu J, Kim H & Kolattukudy PE (2011) Osteoclast precursor differentiation by MCPIP via oxidative stress, endoplasmic reticulum stress, and autophagy. J Mol Cell Biol 3, 360368.
  • 14
    Zhou L, Azfer A, Niu J, Graham S, Choudhury M, Adamski FM, Younce C, Binkley PF & Kolattukudy PE (2006) Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circ Res 98, 11771185.
  • 15
    Qi D, Huang S, Miao R, She ZG, Quinn T, Chang Y, Liu J, Fan D, Chen YE & Fu M (2011) Monocyte chemotactic protein-induced protein 1 (MCPIP1) suppresses stress granule formation and determines apoptosis under stress. J Biol Chem 286, 4169241700.
  • 16
    Younce CW & Kolattukudy PE (2010) MCP-1 causes cardiomyoblast death via autophagy resulting from ER stress caused by oxidative stress generated by inducing a novel zinc-finger protein, MCPIP. Biochem J 426, 4353.
  • 17
    Skalniak L, Mizgalska D, Zarebski A, Wyrzykowska P, Koj A & Jura J (2009) Regulatory feedback loop between NF-kappaB and MCP-1-induced protein 1 RNase. FEBS J 276, 58925905.
  • 18
    Matsushita K, Takeuchi O, Standley DM, Kumagai Y, Kawagoe T, Miyake T, Satoh T, Kato H, Tsujimura T, Nakamura H et al. (2009) Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 458, 11851190.
  • 19
    Mizgalska D, Wegrzyn P, Murzyn K, Kasza A, Koj A, Jura J, Jarzab B & Jura J (2009) Interleukin-1-inducible MCPIP protein has structural and functional properties of RNase and participates in degradation of IL-1beta mRNA. FEBS J 276, 73867399.
  • 20
    Suzuki HI, Arase M, Matsuyama H, Choi YL, Ueno T, Mano H, Sugimoto K & Miyazono K (2011) MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol Cell 44, 424436.
  • 21
    Li M, Cao W, Liu H, Zhang W, Liu X, Cai Z, Guo J, Wang X, Hui Z, Zhang H et al. (2012) MCPIP1 down-regulates IL-2 expression through an ARE-independent pathway. PLoS One 7, e49841.
  • 22
    Iwasaki H, Takeuchi O, Teraguchi S, Matsushita K, Uehata T, Kuniyoshi K, Satoh T, Saitoh T, Matsushita M, Standley DM et al. (2011) The IkappaB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR-IL-1R by controlling degradation of regnase-1. Nat Immunol 12, 11671175.
  • 23
    Tsubuki S, Saito Y, Tomioka M, Ito H & Kawashima S (1996) Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of di-leucine and tri-leucine. J Biochem 119, 572576.
  • 24
    Chen JJ, Huang WC & Chen CC (2005) Transcriptional regulation of cyclooxygenase-2 in response to proteasome inhibitors involves reactive oxygen species-mediated signaling pathway and recruitment of CCAAT/enhancer-binding protein delta and CREB-binding protein. Mol Biol Cell 16, 55795591.
  • 25
    Frezza M, Schmitt S & Dou QP (2011) Targeting the ubiquitin-proteasome pathway: an emerging concept in cancer therapy. Curr Top Med Chem 11, 28882905.
  • 26
    Sears C, Olesen J, Rubin D, Finley D & Maniatis T (1998) NF-kappa B p105 processing via the ubiquitin-proteasome pathway. J Biol Chem 273, 14091419.
  • 27
    Rape M & Jentsch S (2002) Taking a bite: proteasomal protein processing. Nat Cell Biol 4, E113116.
  • 28
    Yao T & Ndoja A (2012) Regulation of gene expression by the ubiquitin-proteasome system. Semin Cell Dev Biol 23, 523529.
  • 29
    Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S et al. (2010) Towards a knowledge-based Human Protein Atlas. Nat Biotechnol 28, 12481250.
  • 30
    Shibata T, Imaizumi T, Tamo W, Matsumiya T, Kumagai M, Cui XF, Yoshida H, Takaya S, Fukuda I & Satoh K (2002) Proteasome inhibitor MG-132 enhances the expression of interleukin-6 in human umbilical vein endothelial cells: involvement of MAP/ERK kinase. Immunol Cell Biol 80, 226230.
  • 31
    Wu HM, Wen HC & Lin WW (2002) Proteasome inhibitors stimulate interleukin-8 expression via Ras and apoptosis signal-regulating kinase-dependent extracellular signal-related kinase and c-Jun N-terminal kinase activation. Am J Respir Cell Mol Biol 27, 234243.
  • 32
    Wu WT, Chi KH, Ho FM, Tsao WC & Lin WW (2004) Proteasome inhibitors up-regulate haem oxygenase-1 gene expression: requirement of p38 MAPK (mitogen-activated protein kinase) activation but not of NF-kappaB (nuclear factor kappaB) inhibition. Biochem J 379, 587593.
  • 33
    Kasza A, Wyrzykowska P, Horwacik I, Tymoszuk P, Mizgalska D, Palmer K, Rokita H, Sharrocks AD & Jura J (2010) Transcription factors Elk-1 and SRF are engaged in IL1-dependent regulation of ZC3H12A expression. BMC Mol Biol 11, 14.
  • 34
    Fiedler MA, Wernke-Dollries K & Stark JM (1998) Inhibition of TNF-alpha-induced NF-kappaB activation and IL-8 release in A549 cells with the proteasome inhibitor MG-132. Am J Respir Cell Mol Biol 19, 259268.
  • 35
    Frevel MA, Bakheet T, Silva AM, Hissong JG, Khabar KS & Williams BR (2003) p38 Mitogen-activated protein kinase-dependent and -independent signaling of mRNA stability of AU-rich element-containing transcripts. Mol Cell Biol 23, 425436.
  • 36
    Shimizu S, Kadowaki M, Yoshioka H, Kambe A, Watanabe T, Kinyamu HK & Eling TE (2013) Proteasome inhibitor MG132 induces NAG-1/GDF15 expression through the p38 MAPK pathway in glioblastoma cells. Biochem Biophys Res Commun 430, 12771282.
  • 37
    Brook M, Tchen CR, Santalucia T, McIlrath J, Arthur JS, Saklatvala J & Clark AR (2006) Posttranslational regulation of tristetraprolin subcellular localization and protein stability by p38 mitogen-activated protein kinase and extracellular signal-regulated kinase pathways. Mol Cell Biol 26, 24082418.
  • 38
    Younce CW, Wang K & Kolattukudy PE (2010) Hyperglycaemia-induced cardiomyocyte death is mediated via MCP-1 production and induction of a novel zinc-finger protein MCPIP. Cardiovasc Res 87, 665674.
  • 39
    Niu J, Wang K, Graham S, Azfer A & Kolattukudy PE (2011) MCP-1-induced protein attenuates endotoxin-induced myocardial dysfunction by suppressing cardiac NF-κB activation via inhibition of IκB kinase activation. J Mol Cell Cardiol 51, 177186.
  • 40
    Nasuhara Y, Adcock IM, Catley M, Barnes PJ & Newton R (1999) Differential IkappaB kinase activation and IkappaBalpha degradation by interleukin-1beta and tumor necrosis factor-alpha in human U937 monocytic cells. Evidence for additional regulatory steps in kappaB-dependent transcription. J Biol Chem 274, 1996519972.
  • 41
    Calvaruso G, Giuliano M, Portanova P, De Blasio A, Vento R & Tesoriere G (2006) Bortezomib induces in HepG2 cells IkappaBalpha degradation mediated by caspase-8. Mol Cell Biochem 287, 1319.
  • 42
    Li C, Chen S, Yue P, Deng X, Lonial S, Khuri FR & Sun SY (2010) Proteasome inhibitor PS-341 (bortezomib) induces calpain-dependent IkappaB(alpha) degradation. J Biol Chem 285, 1609616104.
  • 43
    Kaltschmidt B, Kaltschmidt C, Hehner SP, Droge W & Schmitz ML (1999) Repression of NF-kappaB impairs HeLa cell proliferation by functional interference with cell cycle checkpoint regulators. Oncogene 18, 32133225.
  • 44
    Schneider CA, Rasband WS & Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671675.