SEARCH

SEARCH BY CITATION

References

  • 1
    Bansal S, Srivastava A, Mukherjee G, Pandey R, Verma AK, Mishra P & Kundu B (2011) Hyperthermophilic asparaginase mutants with enhanced substrate affinity and antineoplastic activity: structural insights on their mechanism of action. FASEB J 26, 11611171.
  • 2
    Minton KW, Karmin P, Hahn GM & Minton AP (1982) Nonspecific stabilization of stress-susceptible proteins by stress-resistant proteins: a model for the biological role of heat shock proteins. Proc Natl Acad Sci 79, 71077111.
  • 3
    Caspers GJ, Leunissen JAM & de Jong WW (1995) The expanding small heat shock protein family, and structure predictions of the conserved ‘α-crystallin domain’. J Mol Evol 40, 238248.
  • 4
    de Jong WW, Leunissen JAM & Voorter CEM (1993) Evolution of the α-crystallin/small heat-shock protein family. Mol Biol Evol 10, 103126.
  • 5
    Arrigo AP, Suhan JP & Welch WJ (1988) Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol 8, 50595071.
  • 6
    Horwitz J (2009) Alpha-crystallin: the quest for a homogeneous quaternary structure. Exp Eye Res 88, 190194.
  • 7
    Haley DA, Bova MP, Huang QL, Mchaourab HS & Stewart PL (2000) Small heat-shock protein structures reveal a continuum from symmetric to variable assemblies. J Mol Biol 298, 261272.
  • 8
    Aquilina JA, Benesch JL, Bateman OA, Slingsby C & Robinson CV (2003) Polydispersity of a mammalian chaperone: mass spectrometry reveals the population of oligomers in alphaB-crystallin. Proc Natl Acad Sci USA 100, 1061110616.
  • 9
    Prabhu S, Raman B, Ramakrishna T & Rao CM (2012) HspB2/myotonic dystrophy protein kinase binding protein (MKBP) as a novel molecular chaperone: structural and functional aspects. PLoS One 7, e29810.
  • 10
    Veinger L, Diamant S, Buchner J & Goloubinoff P (1998) The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J Biol Chem 273, 1103211037.
  • 11
    Horwitz J (1992) Alpha-crystallin can function as molecular chaperone. Proc Natl Acad Sci USA 89, 1044910453.
  • 12
    Jakob U, Gaestel M, Engel K & Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268, 15171520.
  • 13
    Lee GJ, Roseman AM, Saibil HR & Vierling E (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding competent state. EMBO J 16, 659671.
  • 14
    Rao PV, Horwitz J & Zigler JS Jr (1993) Alpha-crystallin, a molecular chaperone, forms a stable complex with carbonic anhydrase upon heat denaturation. Biochem Biophys Res Commun 190, 786793.
  • 15
    Shahangian SS, Rasti B, Sajedi RH, Khodarahmi R, Taghdir M & Ranjbar B (2011) Artemin as an efficient molecular chaperone. Protein J 30, 549557.
  • 16
    Manna T, Sarkar T, Poddar A, Roychowdhury M, Das KP & Bhattacharyya B (2001) Chaperone-like activity of tubulin. J Biol Chem 276, 3974239747.
  • 17
    Poon S, Treweek TM, Wilson MR, Easterbrook-Smith SB & Carver JA (2002) Clusterin is an extracellular chaperone that specifically interacts with slowly aggregating proteins on their off-folding pathway. FEBS Lett 513, 259266.
  • 18
    Li DC, Yang F, Lu B, Chen DF & Yang WJ (2012) Thermotolerance and molecular chaperone function of the small heat shock protein HSP20 from hyperthermophilic archaeon, Sulfolobus solfataricus P2. Cell Stress Chaperones 17, 103108.
  • 19
    Kim R, Kim KK, Yokota H & Kim SH (1998) Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. Proc Natl Acad Sci USA 95, 91299133.
  • 20
    Laksanalamai P, Maeder DL & Robb FT (2001) Regulation and mechanism of action of the small heat shock protein from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 183, 51985202.
  • 21
    Mymrilov EV, Seit-Nebi AS & Gusev NB (2011) Large potentials of small heat shock proteins. Physiol Rev 91, 11231159.
  • 22
    Laskowska E, Matuszewska E & Kuczynska-Wisnik D (2010) Small heat shock proteins and protein-misfolding diseases. Curr Pharm Biotechnol 11, 146157.
  • 23
    Basha E, Neill HO & Vierling E (2012) Small heat shock proteins and α-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37, 106117.
  • 24
    Rajaraman K, Raman B & Rao CM (1996) Molten-globule state of carbonic anhydrase binds to the chaperone-like α-crystallin. J Biol Chem 271, 2759527600.
  • 25
    Stromer T, Ehrnsperger M, Gaestel M & Buchner J (2003) Analysis of the interaction of small heat shock proteins with unfolding proteins. J Biol Chem 278, 1801518021.
  • 26
    Das KP & Surewicz WK (1995) Temperature induced exposure of hydrophobic surfaces and its effect on the chaperone activity of alpha-crystallins. FEBS Lett 369, 321325.
  • 27
    Raman B, Ramakrishna T & Rao CM (1995) Temperature dependent chaperone like activity of alpha-crystallin. FEBS Lett 365, 133136.
  • 28
    Kundu B & Guptasarma P (1999) Hydrophobic dye inhibits aggregation of molten carbonic anhydrase during thermal unfolding and refolding. Proteins 37, 321324.
  • 29
    Ikemura H, Takagi H & Inoyue M (1987) Requirement of pro-sequence for the production of active subtilisin E in Escherichia coli. J Biol Chem 262, 78597864.
  • 30
    Chen YJ & Inoyue M (2008) The intramolecular chaperone mediated protein folding. Curr Opin Struct Biol 18, 765770.
  • 31
    Haslbeck M, Franzmann T, Weinfurtner D & Buchner J (2005) Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12, 842846.
  • 32
    Nakamoto H & Vígh L (2007) The small heat shock proteins and their clients. Cell Mol Life Sci 64, 294306.
  • 33
    Van Montfort R, Slingsby C & Vierling E (2001) Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv Protein Chem 59, 105156.
  • 34
    Bhaskara RM & Srinivasan N (2011) Stability of domain structures in multi-domain proteins. Sci Rep 1, 40.
  • 35
    Mills IA, Flaugh SL, Kosinski-Collins MS & King JA (2007) Folding and stability of the isolated Greek key domains of the long-lived human lens proteins γD-crystallin and γS-crystallin. Protein Sci 16, 24272444.
  • 36
    Ehrnsperger M, Graber S, Gaestel M & Buchner J (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16, 221229.
  • 37
    Gnanasekar M, Dakshinamoorthy G & Ramaswamy K (2009) Translationally controlled tumor protein is a novel heat shock protein with chaperone-like activity. Biochem Biophys Res Commun 386, 333337.
  • 38
    Humphreys DT, Carver JA, Easterbrook-Smith SB & Wilson MR (1999) Clusterin has chaperone-like activity similar to that of small heat shock proteins. J Biol Chem 274, 68756881.
  • 39
    Kumar A & Singh S (2009) Interaction of chaperone α-crystallin with unfolded state of α-amylase: implications for reconstitution of the active enzyme. Int J Biol Macromol 45, 493498.
  • 40
    Kulig M & Ecroyd H (2012) The small heat shock protein αB-crystallin uses different mechanisms of chaperone action to prevent the amorphous versus fibrillar aggregation of α-lactalbumin. Biochem J 448, 343352.
  • 41
    Das KP & Surewicz WK (1995) On the substrate specificity of α-crystallin as a molecular chaperone. Biochem J 311, 367370.
  • 42
    Clark EDB (1998) Refolding of recombinant proteins. Curr Opin Biotechnol 9, 157163.
  • 43
    Robertson AL, Headey SJ, Saunders HM, Ecroyd H, Scanlon MJ, Carver JA & Bottomley SP (2010) Small heat-shock proteins interact with a flanking domain to suppress polyglutamine aggregation. Proc Natl Acad Sci USA 107, 1042410429.
  • 44
    Raman B, Ban T, Sakai M, Pasta SY, Ramakrishna T, Naiki H, Goto Y & Rao CM (2005) αβ-crystallin, a small heat-shock protein, prevents the amyloid-fibril growth of an amyloid β-peptide and β2-microglobulin. Biochem J 392, 573581.
  • 45
    Binger KJ, Ecroyd H, Yang S, Carver JA, Howlett GJ & Griffin MDW (2013) Avoiding the oligomeric state: αB-crystallin inhibits fragmentation and induces dissociation of apolipoprotein C-II amyloid fibrils. FASEB J 27, 12141222.
  • 46
    Shammas SL, Waudby CA, Wang S, Buell AK, Knowles TPJ, Ecroyd H, Welland ME, Carver JA, Dobson CM & Meehan S (2011) Binding of the molecular chaperone αβ-crystallin to Aβ amyloid fibrils inhibits fibril elongation. Biophys J 101, 16811689.
  • 47
    Thakur AK & Wetzel R (2002) Mutational analysis of the structural organization of polyglutamine aggregates. Proc Natl Acad Sci USA 99, 1701417019.