• 1
    Seo J & Lee KJ (2004) Post-translational modifications and their biological functions: proteomic analysis and systematic approaches. J Biochem Mol Biol 37, 3544.
  • 2
    Chen M, Sun JP, Liu J & Yu X (2010) Research progress of several protein tyrosine phosphatases in diabetes. Sheng Li Xue Bao 62, 179189.
  • 3
    Liu J, Chen M, Li R, Yang F, Shi X, Zhu L, Wang HM, Yao W, Liu Q, Meng FG et al. (2012) Biochemical and functional studies of lymphoid-specific tyrosine phosphatase (Lyp) variants S201F and R266W. PLoS One 7, e43631.
  • 4
    Yu X, Chen M, Zhang S, Yu ZH, Sun JP, Wang L, Liu S, Imasaki T, Takagi Y & Zhang ZY (2011) Substrate specificity of lymphoid-specific tyrosine phosphatase (Lyp) and identification of Src kinase-associated protein of 55 kDa homolog (SKAP-HOM) as a Lyp substrate. J Biol Chem 286, 3052630534.
  • 5
    Yu X, Sun JP, He Y, Guo X, Liu S, Zhou B, Hudmon A & Zhang ZY (2007) Structure, inhibitor, and regulatory mechanism of Lyp, a lymphoid-specific tyrosine phosphatase implicated in autoimmune diseases. Proc Natl Acad Sci USA 104, 1976719772.
  • 6
    Liu S, Sun JP, Zhou B & Zhang ZY (2006) Structural basis of docking interactions between ERK2 and MAP kinase phosphatase 3. Proc Natl Acad Sci USA 103, 53265331.
  • 7
    Wortzel I & Seger R (2011) The ERK cascade: distinct functions within various subcellular organelles. Genes Cancer 2, 195209.
  • 8
    Ahn NG, Seger R, Bratlien RL, Diltz CD, Tonks NK & Krebs EG (1991) Multiple components in an epidermal growth factor-stimulated protein kinase cascade. In vitro activation of a myelin basic protein/microtubule-associated protein 2 kinase. J Biol Chem 266, 42204227.
  • 9
    Seger R, Ahn NG, Boulton TG, Yancopoulos GD, Panayotatos N, Radziejewska E, Ericsson L, Bratlien RL, Cobb MH & Krebs EG (1991) Microtubule-associated protein 2 kinases, ERK1 and ERK2, undergo autophosphorylation on both tyrosine and threonine residues: implications for their mechanism of activation. Proc Natl Acad Sci USA 88, 61426146.
  • 10
    Roskoski R Jr (2012) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 66, 105143.
  • 11
    Alessi DR, Gomez N, Moorhead G, Lewis T, Keyse SM & Cohen P (1995) Inactivation of p42 MAP kinase by protein phosphatase 2A and a protein tyrosine phosphatase, but not CL100, in various cell lines. Curr Biol 5, 283295.
  • 12
    Anderson NG, Maller JL, Tonks NK & Sturgill TW (1990) Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Nature 343, 651653.
  • 13
    Sontag E, Fedorov S, Kamibayashi C, Robbins D, Cobb M & Mumby M (1993) The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation. Cell 75, 887897.
  • 14
    Zhou B, Wang ZX, Zhao Y, Brautigan DL & Zhang ZY (2002) The specificity of extracellular signal-regulated kinase 2 dephosphorylation by protein phosphatases. J Biol Chem 277, 3181831825.
  • 15
    Maeda T, Tsai AY & Saito H (1993) Mutations in a protein tyrosine phosphatase gene (PTP2) and a protein serine/threonine phosphatase gene (PTC1) cause a synthetic growth defect in Saccharomyces cerevisiae. Mol Cell Biol 13, 54085417.
  • 16
    Maeda T, Wurgler-Murphy SM & Saito H (1994) A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369, 242245.
  • 17
    Duan X, Liang YY, Feng XH & Lin X (2006) Protein serine/threonine phosphatase PPM1A dephosphorylates Smad1 in the bone morphogenetic protein signaling pathway. J Biol Chem 281, 3652636532.
  • 18
    Lin X, Duan X, Liang YY, Su Y, Wrighton KH, Long J, Hu M, Davis CM, Wang J, Brunicardi FC et al. (2006) PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Cell 125, 915928.
  • 19
    Takekawa M, Maeda T & Saito H (1998) Protein phosphatase 2Calpha inhibits the human stress-responsive p38 and JNK MAPK pathways. EMBO J 17, 47444752.
  • 20
    Ekerot M, Stavridis MP, Delavaine L, Mitchell MP, Staples C, Owens DM, Keenan ID, Dickinson RJ, Storey KG & Keyse SM (2008) Negative-feedback regulation of FGF signalling by DUSP6/MKP-3 is driven by ERK1/2 and mediated by Ets factor binding to a conserved site within the DUSP6/MKP-3 gene promoter. Biochem J 412, 287298.
  • 21
    Das AK, Helps NR, Cohen PT & Barford D (1996) Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. EMBO J 15, 67986809.
  • 22
    Fjeld CC & Denu JM (1999) Kinetic analysis of human serine/threonine protein phosphatase 2Calpha. J Biol Chem 274, 2033620343.
  • 23
    Flajolet M, Rakhilin S, Wang H, Starkova N, Nuangchamnong N, Nairn AC & Greengard P (2003) Protein phosphatase 2C binds selectively to and dephosphorylates metabotropic glutamate receptor 3. Proc Natl Acad Sci USA 100, 1600616011.
  • 24
    Huang Z, Zhou B & Zhang ZY (2004) Molecular determinants of substrate recognition in hematopoietic protein-tyrosine phosphatase. J Biol Chem 279, 5215052159.
  • 25
    Zhang ZY, Maclean D, Thieme-Sefler AM, Roeske RW & Dixon JE (1993) A continuous spectrophotometric and fluorimetric assay for protein tyrosine phosphatase using phosphotyrosine-containing peptides. Anal Biochem 211, 715.
  • 26
    Jackson MD, Fjeld CC & Denu JM (2003) Probing the function of conserved residues in the serine/threonine phosphatase PP2Calpha. Biochemistry 42, 85138521.
  • 27
    Canagarajah BJ, Khokhlatchev A, Cobb MH & Goldsmith EJ (1997) Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90, 859869.
  • 28
    Zhang J, Zhang F, Ebert D, Cobb MH & Goldsmith EJ (1995) Activity of the MAP kinase ERK2 is controlled by a flexible surface loop. Structure. 3, 299307.
  • 29
    Webb MR (1992) A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems. Proc Natl Acad Sci USA 89, 48844887.
  • 30
    Zhao Y & Zhang ZY (2001) The mechanism of dephosphorylation of extracellular signal-regulated kinase 2 by mitogen-activated protein kinase phosphatase 3. J Biol Chem 276, 3238232391.
  • 31
    Marszalek J, Kostrowicki J & Spychala J (1989) LEHM: a convenient non-linear regression microcomputer program for fitting Michaelis–Menten and Hill models to enzyme kinetic data. Comput Appl Biosci 5, 239240.
  • 32
    Ritchie DW & Venkatraman V (2010) Ultra-fast FFT protein docking on graphics processors. Bioinformatics 26, 23982405.