SEARCH

SEARCH BY CITATION

References

  • 1
    Murphy SA & Van Der Vaart AW (1998) On profile likelihood. J Am Stat Assoc 95, 449485.
  • 2
    Venzon DJ & Moolgavkar SH (1988) A method for computing profile-likelihood-based confidence intervals. Appl Stat 37, 8794.
  • 3
    Meeker W & Escobar L (1995) Teaching about approximate confidence regions based on maximum likelihood estimation. Am Stat 49, 4853.
  • 4
    Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U & Timmer J (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25, 19231929.
  • 5
    Raue A, Becker V, Klingmüller U & Timmer J (2010) Identifiability and observability analysis for experimental design in non-linear dynamical models. Chaos 20, 45105.
  • 6
    Becker V, Schilling M, Bachmann J, Baumann U, Raue A, Maiwald T, Timmer J & Klingmüller U (2010) Covering a broad dynamic range: information processing at the erythropoietin receptor. Science 328, 14041408.
  • 7
    Bachmann J, Raue A, Schilling M, Böhm ME, Kreutz C, Kaschek D, Busch H, Gretz N, Lehmann WD, Timmer J et al. (2011) Division of labor by dual feedback regulators controls jak2/stat5 signaling over broad ligand range. Mol Syst Biol 7, 516.
  • 8
    Maiwald T, Blumberg J, Raue A, Hengl S, Schilling M, Sy SK, Becker V, Klingmüller U & Timmer J (2012) In silico labeling reveals the time-dependent label half-life and transit-time in dynamical systems. BMC Syst Biol 6, 13.
  • 9
    Schaber J, Baltanas R, Bush A, Klipp E & Colman-Lerner A (2012) Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast. Mol Syst Biol 8, 622.
  • 10
    Schaber J (2012) Easy parameter identifiability analysis with COPASI. Biosystems 110, 183185.
  • 11
    Steiert B, Raue A, Timmer J & Kreutz C (2012) Experimental design for parameter estimation of gene regulatory networks. PLoS ONE 7, e40052.
  • 12
    Schelker M, Raue A, Timmer J & Kreutz C (2012) Comprehensive estimation of input signals and dynamics in biochemical reaction networks. Bioinformatics 28, i529i534.
  • 13
    Hinkley D (1979) Predictive likelihood. Ann Stat 7, 718728.
  • 14
    Bjornstad JF (1990) Predictive likelihood: a review. Stat Sci 5, 242254.
  • 15
    Kreutz C, Raue A & Timmer J (2011) Likelihood based observability analysis and confidence intervals for predictions of dynamic models. BMC Syst Biol 6, 120.
  • 16
    Kreutz C, Raue A & Timmer J (2012) Likelihood based observability analysis and confidence intervals for predictions of dynamic models. BMC Syst Biol 6, 120.
  • 17
    Cedersund G (2012) Conclusions via unique predictions obtained despite unidentifiability–new definitions and a general method. FEBS J 279, 35133527.
  • 18
    Wolkenhauer O, Ullah M, Wellstead P & Cho K-H (2005) The dynamic systems approach to control and regulation of intracellular networks. FEBS Lett 579, 18461853.
  • 19
    Kreutz C, Bartolome-Rodriguez MM, Maiwald T, Seidl M, Blum HE, Mohr L & Timmer J (2007) An error model for protein quantification. Bioinformatics 23, 27472753.
  • 20
    Cox DR & Hinkley DV (1994) Theoretical Statistics. Chapman & Hall, London.
  • 21
    D'Agostino RB & Stephens MA (1986) Goodness of Fit Techniques. Marcel Dekker Inc., New York.
  • 22
    Neyman L & Pearson ES (1933) On the problem of the most efficient tests of statistical hypotheses. Phil Trans Roy Soc A 231, 289337.
  • 23
    Gould N & Leyffer S (2003) An Introduction to Algorithms for Nonlinear Optimization. Springer, Berlin, pp. 109197.
  • 24
    Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE & Woodward CS (2005) SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans Math Softw 31, 363396.
  • 25
    Fletcher R & Leyffer S (1998) Numerical experience with lower bounds for miqp branch–and–bound. SIAM J Optim 8, 604616.
  • 26
    Chen J-S & Jennrich RI (2002) Simple accurate approximation of likelihood profiles. J Comput Graph Stat 11, 714732.