• 1
    Seefeldt LC, Hoffman BH & Dean DR (2009) Mechanism of Mo-dependent nitrogenase. Annu Rev Biochem 78, 701722.
  • 2
    Schindelin H, Kisker C, Schlessman JL, Howard JB & Rees DC (1997) Structure of ADP·AlF4–stabilized nitrogenase complex and its implications for signal transduction. Nature 387, 370376.
  • 3
    Dixon R & Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2, 621631.
  • 4
    Nordlund S (2000) Regulation of nitrogenase activity in phototrophic bacteria by reversible covalent modification. In Prokaryotic Nitrogen Fixation: A Model System for Analysis of a Biological Process (Triplett EW, ed), pp. 149163. Horizon Scientific Press, Wymondham, UK.
  • 5
    Huergo LF, Pedrosa FO, Mueller-Santos M, Chubatsu LS, Monterio RA, Merrick M & Souza EM (2012) PII signal transduction proteins: pivotal players in post-translational control of nitrogenase activity. Microbiology 158, 176190.
  • 6
    Zhang Y, Burris RH, Ludden PW & Roberts GP (1997) Regulation of nitrogen fixation in Azospirillum brasilense. FEMS Microbiol Lett 152, 195204.
  • 7
    Pope MR, Murrell SA & Ludden PW (1985) Covalent modification of the iron protein of nitrogenase from Rhodospirillum rubrum by adenosine diphosphoribosylation of a specific arginyl residue. Proc Natl Acad Sci USA 82, 31733177.
  • 8
    Fitzmaurice WP, Saari LL, Lowery RG, Ludden PW & Roberts GP (1989) Genes coding for the reversible ADP-ribosylation system of dinitrogenase reductase from Rhodospirillum rubrum. Mol Gen Genet 218, 340347.
  • 9
    Lowery RG & Ludden PW (1988) Purification and properties of dinitrogenase reductase inactivating ADP-ribosyltransferase from the photosynthetic bacterium Rhodospirillum rubrum. J Biol Chem 263, 1671416719.
  • 10
    Grunwald SK, Ryle MJ, Lanzilotta WN & Ludden PW (2000) ADP-ribosylation of variants of Azotobacter vinelandii dinitrogenase reductase by Rhodospirillum rubrum dinitrogenase reductase ADP-ribosyltransferase. J Bacteriol 182, 25972603.
  • 11
    Lowery RG & Ludden PW (1989) Effect of nucleotides on the activity of dinitrogenase reductase ADP-ribosyltransferase from Rhodospirillum rubrum. Biochemistry 28, 49564961.
  • 12
    Tsuge H, Nagahama M, Nishimura H, Hisatsune J, Sakaguchi Y, Itogawa Y, Katunuma N & Sakurai J (2003) Crystal structure and site-directed mutagenesis of enzymatic components from Clostridium perfringens iota-toxin. J Mol Biol 325, 471483.
  • 13
    Bell CE & Eisenberg D (1996) Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide. Biochemistry 35, 11371149.
  • 14
    Visschedyk D, Rochon A, Tempel W, Dimov S, Park H-W & Merrill AR (2012) Certhrax toxin, an anthrax-related ADP-ribosyltransferase from Bacillus cereus. J Biol Chem 49, 4108941102.
  • 15
    Buchan DWA, Ward SM, Lobley AE, Nugent TCO, Bryson K & Jones DT (2010) Protein annotation and modelling servers at University College London. Nucleic Acids Res 38, W563W568.
  • 16
    Saari LL, Triplett EW & Ludden PW (1984) Purification and properties of the activating enzyme for iron protein of nitrogenase from the photosynthetic bacterium Rhodospirillum rubrum. J Biol Chem 259, 1550215508.
  • 17
    Zumft WG & Nordlund S (1981) Stabilization and partial characterization of the activating enzyme for dinitrogenase reductase (Fe-protein) from Rhodospirillum rubrum. FEBS Lett 127, 7982.
  • 18
    Nordlund S & Noren A (1984) Dependence on divalent cations of the activation of inactive Fe-protein of nitrogenase from Rhodospirillum rubrum. Biochim Biophys Acta 791, 2127.
  • 19
    Saari LL, Pope MR, Murrell SA & Ludden PW (1986) Studies on the activating enzyme for iron protein of nitrogenase from Rhodospirillum rubrum. J Biol Chem 261, 49734977.
  • 20
    Berthold CL, Wang H, Nordlund S & Högbom M (2009) Mechanism of ADP-ribosylation removal revealed by the structure and ligand complexes of the dimanganese mono-ADP-ribosylhydrolase DraG. Proc Natl Acad Sci USA 106, 1424714252.
  • 21
    Li X-D, Huergo LF, Gasperina A, Pedrosa FO, Merrick M & Winkler FK (2009) Crystal structure of dinitrogenase reductase-activating glycohydrolase (DRAG) reveals conservation in the ADP-ribosylhydrolase fold and specific features in the ADP-ribose-binding pocket. J Mol Biol 390, 737746.
  • 22
    Rajendran C, Gerhardt ECM, Bjelic S, Gasperina A, Scarduelli M, Pedrosa FO, Chubatsu LS, Merrick M, Souza EM, Winkler FK et al. (2011) Crystal structure of the GlnZ–DraG complex reveals a different form of PII–target interaction. Proc Natl Acad Sci USA 108, 1897218976.
  • 23
    Mueller-Dieckmann C, Kernstock S, Lisurek M, von Kries JP, Haag F, Weiss MS & Koch-Nolte F (2006) The structure of human ADP-ribosylhydrolase 3 (ARH3) provides insights into the reversibility of protein ADP-ribosylation. Proc Natl Acad Sci USA 103, 1502615031.
  • 24
    Mueller-Dieckmann C, Kernstock S, Mueller-Dieckmann J, Weiss MS & Koch-Nolte F (2008) Structure of mouse ADP-ribosylhydrolase 3 (mARH3). Acta Crystallogr Sect F Struct Biol Cryst Commun 64, 156162.
  • 25
    Ljungström E, Yates MG & Nordlund S (1989) Purification of the activating enzyme for the Fe-protein of nitrogenase from Azospirillum brasilense. Biochim Biophys Acta 994, 210214.
  • 26
    Cervantes-Laurean D, Minter DE, Jacobson EL & Jacobson MK (1993) Protein glycation by ADP-ribose: studies of model conjugates. Biochemistry 32, 15281534.
  • 27
    Jacobson EL, Cervantes-Laurean D & Jacobson MK (1994) Glycation of proteins by ADP-ribose. Mol Cell Biochem 138, 207212.
  • 28
    Forchammer K (2008) PII signal transducers: novel functional and structural insights. Trends Microbiol 16, 6572.
  • 29
    Jonsson A & Nordlund S (2007) In vitro studies of the uridylylation of the three PII protein paralogs from Rhodospirillum rubrum: the transferase activity of R. rubrum GlnD is regulated by α–ketoglutarate and divalent cations but not by glutamine. J Bacteriol 189, 34713478.
  • 30
    Moure VR, Danyal K, Zhi-YongYang Z–Y, Wendroth S, Müller-Santos M, Pedrosa FO, Scarduelli M, Gerhardt ECM, Huergo LF, Souza EM et al. (2013) The nitrogenase regulatory enzyme dinitrogenase reductase ADP-ribosyltransferase (DraT) is activated by direct interaction with the signal transduction protein GlnB. J Bacteriol 195, 279286.
  • 31
    Huergo LF, Merrick M, Pedrosa FO, Chubatsu LS, Araujo LM & Souza EM (2007) Ternary complex formation between AmtB, GlnZ and the nitrogenase regulatory enzyme DraG reveals a novel facet of nitrogen regulation in bacteria. Mol Microbiol 66, 15231535.
  • 32
    Javelle A, Lupo D, Ripoche P, Fulford T, Merrick M & Winkler FK (2008) Substrate binding, deprotonation, and selectivity atthe periplasmic entrance of the Escherichia coli ammonia channel AmtB. Proc Natl Acad Sci USA 105, 50405045.