SEARCH

SEARCH BY CITATION

References

  • 1
    Wolkenhauer O & Muir A (2011) The complexity of cell-biological systems. In Philosophy of Complex Systems (Hooker C, ed), pp. 345385. Elsevier Publishers, Amsterdam, The Netherlands.
  • 2
    Cornish-Bowden A & Cárdenas M (2008) Self-organization at the origin of life. J Theor Biol 252, 547563.
  • 3
    Strand A & Oftedal G (2009) Functional stability and systems level causation. Philos Sci 76, 809820.
  • 4
    Wagner A (2005) Robustness and Evolvability in Living Systems. Princeton University Press, Princeton, NJ.
  • 5
    Conant G & Wagner A (2003) Convergent evolution of gene circuits. Nat Genet 34, 264266.
  • 6
    Wagner A (2011) The Origins of Evolutionary Innovations: A Theory of Transformative Change in Living Systems. Oxford University Press, New York.
  • 7
    Aderem AS (2005) Systems biology: its practice and challenges. Cell 121, 511513.
  • 8
    Motta S & Pappalardo F (2012) Mathematical modeling of biological systems. Brief Bioinform 1, 112.
  • 9
    Van Regenmortel M (2004) Reductionism and complexity in molecular biology. EMBO Rep 5, 10161020.
  • 10
    Cornish-Bowden A (2011) Systems biology – how far has it come? Biochemist 33, 1618.
  • 11
    Wolkenhauer O, Fell D, De Meyts P, Blüthgen N, Herzel H, Le Novère N, Höfer T, Schürrle K & Van Leeuwen I (2009) SysBioMed report: advancing systems biology for medical applications. IET Syst Biol 3, 131136.
  • 12
    Wolkenhauer O, Auffray C, Baltrusch S, Blüthgen N, Byrne H, Cascante M, Ciliberto A, Dale T, Drasdo D & Fell D (2010) Systems biologists seek fuller integration of systems biology approaches in new cancer research programs. Cancer Res 70, 1213.
  • 13
    Wolkenhauer O, Auffray C, Jaster R, Steinhoff G & Damman O (2013) The road from systems biology to systems medicine. Pediatr Res 73, 502507.
  • 14
    Kohl P & Noble D (2009) Systems biology and the virtual physiological human. Mol Syst Biol 5, 292.
  • 15
    Wiggins S (2003) Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York.
  • 16
    Ullah M & Wolkenhauer O (2011) Stochastic Approaches for Systems Biology. Springer, New York.
  • 17
    Gatherer D (2012) So what do we really mean when we say that systems biology is holistic? BMC Syst Biol 4, 112.
  • 18
    Calvert J (2010) Systems biology, interdisciplinarity and disciplinary identity. In Collaboration in the New Life Sciences (Parker JN, Vermeulen N & Penders B, eds), pp. 219244. Ashgate, London.
  • 19
    Calvert J & Fujimura JH (2011) Calculating life? Duelling discourses in interdisciplinary systems biology. Stud Hist Philos Biol Biomed Sci 42, 155163.
  • 20
    Pray L (2008) LH Hartwell's yeast: a model organism for studying somatic mutations and cancer. Nat Educ 1, 1.
  • 21
    Kacser H (1986) On parts and wholes in metabolism. In The Organization of Cell Metabolism (Welch GR & Clegg JS, eds), pp. 327337. Plenum Press, New York.
  • 22
    Mesarović M & Takahara Y (1970) Theory of Hierarchical, Multilevel, Systems. Academic Press, New York.
  • 23
    Mesarović M & Takahara Y (1975) General Systems Theory: Mathematical Foundations. Academic Press, New York.
  • 24
    Wolkenhauer O, Shibata D & Mesarović M (2012) The role of theorem providing in systems biology. J Theor Biol 7, 5761.
  • 25
    Hanahan D & Weinberg RA (2000) The hallmarks of cancer. Cell 100, 5770.
  • 26
    Kreeger PK & Laufenburger DA (2010) Cancer systems biology: a network modeling perspective. Carcinogenesis 31, 28.
  • 27
    Lazebnik Y (2002) Can a biologist fix a radio? Or, what I learned while studying apoptosis. Cancer Cell 2, 179182.
  • 28
    Alberghina L, Hohmann S & Westerhoff HV (2005) Systems biology: necessary developments and trends. In Systems Biology. Definitions and Perspectives (Westerhoff HV & Alberghina L, eds), pp. 389402. Springer, New York.
  • 29
    Wolkenhauer O & Mesarović M (2005) Feedback dynamics and cell function: why systems biology is called Systems Biology. Mol BioSyst 1, 1416.
  • 30
    Karsenti J (2008) Self-organization in cell biology: a brief history. Nat Rev Mol Cell Biol 9, 255262.
  • 31
    Weaver W (1948) Science and complexity. Am Sci 36, 536544.
  • 32
    Noble D (2006) The Music of Life: Biology beyond the Genome. Oxford University Press, Oxford.
  • 33
    Noble D (2012) A theory of biological relativity: no privileged level of causation. Interface Focus 2, 5564.
  • 34
    Potten CS & Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110, 10011020.
  • 35
    Wolkenhauer O, Shibata DK & Mesarović M (2011) A stem cell niche dominance theorem. BMC Syst Biol 5, 116.
  • 36
    Craver C & Bechtel W (2007) Top-down causation without top-down causes. Biol Philos 22, 547563.
  • 37
    Mesarovi M, Sreenath SN & Keene JD (2004) Search for organizing principles: understanding in systems biology. Syst Biol 1, 1927.
  • 38
    Weinberg RA (2007) The Biology of Cancer. Garland Science, New York.
  • 39
    Soto A & Sonnenschein C (2011) The tissue organization field theory of cancer: a testable replacement for the somatic mutation theory. BioEssays 5, 322340.
  • 40
    Hunter P, Coveney PV, De Bono B, Diaz V, Fenner J, Frangi AF, Harris P, Hose R, Kohl P, Lawford P, et al. (2010) A vision and strategy for the virtual physiological human in 2010 and beyond. Philos Trans R Soc A 368, 25952614.
  • 41
    Markram H (2007) The blue brain project. Nat Rev Neurosci 7, 153160.
  • 42
    Markram H (2012) The human brain project. Sci Am 306, 5055.
  • 43
    Shepherd G, Mirsky J, Healy M, Singer M, Skoufos E, Hines M, Nadkarni PM & Miller P (1998) The human brain project: neuroinformatics tools for integrating, searching and modeling multidisciplinary neuroscience data. Trends Neurosci 21, 406468.
  • 44
    Carroll L (1939) Sylvia and Bruno concluded. In The Complete Works of Lewis Carroll (Carroll L, ed.), pp. 461670. Penguin Books, London.
  • 45
    Borges J (1960) On exactitude in science. In Jorge Luis Borges: Collected Fictions (Hurley A, ed.), pp. 325. Penguin Books, London.
  • 46
    Hanahan D & Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144, 646667.
  • 47
    Nurse P & Hayles J (2011) The cell in an era of systems biology. Cell 144, 850854.
  • 48
    Loscalzo J & Barabasi A (2011) Systems biology and the future of medicine. Wiley Interdiscip Rev Syst Biol Med 3, 619627.
  • 49
    Bertalanffy Lv (1969) General Systems Theory. Foundations, Development, Applications. George Braziller, New York.
  • 50
    Rashevsky N (1961) Mathematical Principles in Biology and their Applications. Charles C Thomas, Springfield, IL, USA.
  • 51
    Velazquez JL (2009) Finding simplicity in complexity: general principles of biological and nonbiological organization. J Biol Phys 35, 209221.
  • 52
    Rosen R (1967) Optimality Principles in Biology. Butterworths, London.
  • 53
    Savageau M (1976) Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology. Addison-Wesley, Boston, MA.
  • 54
    Alon U (2006) An Introduction to Systems Biology. Design Principles of Biological Circuits. Chapman & Hall, Boca Raton, FL.
  • 55
    Bray D (2001) Reasoning for results. Nature 412, 863.
  • 56
    Dupré J (1993) The Disorder of Things: Metaphysical Foundations for the Disunity of Science. Harvard University Press, Cambridge, MA.
  • 57
    Klir GJ (1991) Facets of Systems Science. Plenum Press, New York.
  • 58
    Lynch M (2007) The frailty of adaptive hypotheses for the origins of organismal complexity. Proc Natl Acad Sci USA 104, 85978604.
  • 59
    Soyer O (2012) Evolutionary Systems Biology. Springer, London.
  • 60
    Hartwell LH, Hopfield JJ, Leibler S & Murray AW (1999) From molecular to modular cell biology. Nature 402, C47C51.
  • 61
    Li X, Erten S, Bebek G, Koyuturk M & Li J (2009) Comparative analysis of modularity in biological systems. Bioinformatics 2009, 104109.
  • 62
    Ravasz N (2009) Detecting hierarchical modularity in biological networks. Methods Mol Biol 541, 145160.
  • 63
    Gunawardena J (2010) Biological systems theory. Science 328, 581582.
  • 64
    Hofmeyr J-HS (2007) The biochemical factory that autonomously fabricates itself: a systems biological view of the living cell. In Systems Biology: Philosophical Foundations (Boogerd F, Bruggeman FJ, Hofmeyr J-HS & Westerhoff HV, eds), pp. 215241. Elsevier, Amsterdam, The Netherlands.
  • 65
    Letelier JC, Cárdenas M & Cornish-Bowden A (2011) From L'Homme Machine to metabolic closure: steps towards understanding life. J Theor Biol 286, 100113.
  • 66
    Mulej M, Potocan V, Zenko Z, Kajzer S, Ursic D, Knez-Riedl J, Lynn M & Ovsenik J (2004) How to restore Bertalanffian systems thinking. Kybernetes 33, 48.
  • 67
    Piedrafta G, Montero F, Morán F, Cárdenas ML & Cornish-Bowden A (2010) A simple self-maintaining metabolic system: robustness, autocatalysis, bistability. PLoS Comput Biol 6, e1000872.
  • 68
    Wolkenhauer O & Hofmeyr J (2007) An abstract cell model that describes the self-organization of cell function in living systems. J Theor Biol 246, 461476.
  • 69
    Lander A (2004) A calculus of purpose. PLoS Biol 2, 712714.
  • 70
    Mendoza E (2009) System biology: its past, present and potential. Philipp Sci Lett 2, 1634.
  • 71
    Bertalanffy Lv (1950) An outline of general system theory. Br J Philos Sci 1, 134165.
  • 72
    Bertalanffy Lv (1950) The theory of open systems in physics and biology. Science 111, 2329.