• 1
    Paget MSB & Buttner MJ (2003) Thiol-based regulatory switches. Annu Rev Genet 37, 91121.
  • 2
    Kim SO, Merchant K, Nudelman R, Beyer WF Jr, Keng T, DeAngelo J, Hausladen A & Stamler JS (2002) OxyR: a molecular code for redox-related signaling. Cell 109, 383396.
  • 3
    Åslund F, Zheng M, Beckwith J & Storz G (1999) Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc Natl Acad Sci USA 96, 61616165.
  • 4
    Zheng M, Åslund F & Storz G (1998) Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279, 17181721.
  • 5
    Toledano MB, Kullik I, Trinh F, Baird PT, Schneider TD & Storz G (1994) Redox-dependent shift of OxyR–DNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection. Cell 78, 897909.
  • 6
    Zeller T, Mraheil MA, Moskvin OV, Li K, Gomelsky M & Klug G (2007) Regulation of hydrogen peroxide-dependent gene expression in Rhodobacter sphaeroides: regulatory functions of OxyR. J Bacteriol 189, 37843792.
  • 7
    Zheng M, Wang X, Templeton LJ, Smulski DR, LaRossa RA & Storz G (2001) DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183, 45624570.
  • 8
    Wei Q, Minh PNL, Dötsch A, Hildebrand F, Panmanee W, Elfarash A, Schulz S, Plaisance S, Charlier D, Hassett D, et al. (2012) Global regulation of gene expression by OxyR in an important human opportunistic pathogen. Nucleic Acids Res 40, 43204333.
  • 9
    Harrison A, Ray WC, Baker BD, Armbruster DW, Bakaletz LO & Munson RS Jr (2007) The OxyR regulon in nontypeable Haemophilus influenzae. J Bacteriol 189, 10041012.
  • 10
    Jang S & Imlay JA (2010) Hydrogen peroxide inactivates the Escherichia coli Isc iron–sulphur assembly system, and OxyR induces the Suf system to compensate. Mol Microbiol 78, 14481467.
  • 11
    Italiani VCS, da Silva Neto JF, Braz VS & Marques MV (2011) Regulation of catalase–peroxidase KatG is OxyR dependent and Fur independent in Caulobacter crescentus. J Bacteriol 193, 17341744.
  • 12
    Liu Y, Bauer SC & Imlay JA (2011) The YaaA protein of the Escherichia coli OxyR regulon lessens hydrogen peroxide toxicity by diminishing the amount of intracellular unincorporated iron. J Bacteriol 193, 21862196.
  • 13
    Charoenlap N, Buranajitpakorn S, Duang-Nkern J, Namchaiw P, Vattanaviboon P & Mongkolsuk S (2011) Evaluation of the virulence of Xanthomonas campestris pv. campestris mutant strains lacking functional genes in the OxyR regulon. Curr Microbiol 63, 232237.
  • 14
    Whitby PW, Morton DJ, VanWagoner TM, Seale TW, Cole BK, Mussa HJ, McGhee PA, Bauer CY, Springer JM & Stull TL (2012) Haemophilus influenzae OxyR: characterization of its regulation, regulon and role in fitness. PLoS ONE 7, e50588.
  • 15
    Sund CJ, Rocha ER, Tzianabos AO, Wells WG, Gee JM, Reott MA, O'Rourke DP & Smith CJ (2008) The Bacteroides fragilis transcriptome response to oxygen and H2O2: the role of OxyR and its effect on survival and virulence. Mol Microbiol 67, 129142.
  • 16
    Loprasert S, Fuangthong M, Whangsuk W, Atichartpongkul S & Mongkolsuk S (2000) Molecular and physiological analysis of an OxyR-regulated ahpC promoter in Xanthomonas campestris pv. phaseoli. Mol Microbiol 37, 15041514.
  • 17
    Mongkolsuk S, Whangsuk W, Fuangthong M & Loprasert S (2000) Mutations in oxyR resulting in peroxide resistance in Xanthomonas campestris. J Bacteriol 182, 38463849.
  • 18
    Mongkolsuk S, Sukchawalit R, Loprasert S, Praituan W & Upaichit A (1998) Construction and physiological analysis of a Xanthomonas mutant to examine the role of the oxyR gene in oxidant-induced protection against peroxide killing. J Bacteriol 180, 39883991.
  • 19
    Loprasert S, Whangsuk W, Sallabhan R & Mongkolsuk S (2003) Regulation of the katGdpsA operon and the importance of KatG in survival of Burkholderia pseudomallei exposed to oxidative stress. FEBS Lett 542, 1721.
  • 20
    Ieva R, Roncarati D, Metruccio MM, Seib KL, Scarlato V & Delany I (2008) OxyR tightly regulates catalase expression in Neisseria meningitidis through both repression and activation mechanisms. Mol Microbiol 70, 11521165.
  • 21
    Tseng HJ, McEwan AG, Apicella MA & Jennings MP (2003) OxyR acts as a repressor of catalase expression in Neisseria gonorrhoeae. Infect Immun 71, 550556.
  • 22
    Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104, 155172.
  • 23
    Inui M, Kawaguchi H, Murakami S, Vertès AA & Yukawa H (2004) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8, 243254.
  • 24
    Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA & Yukawa H (2004) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7, 182196.
  • 25
    Okino S, Noburyu R, Suda M, Jojima T, Inui M & Yukawa H (2008) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81, 459464.
  • 26
    Okino S, Suda M, Fujikura K, Inui M & Yukawa H (2008) Production of d-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78, 449454.
  • 27
    Smith KM, Cho KM & Liao JC (2010) Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 87, 10451055.
  • 28
    Wendisch VF, Bott M & Eikmanns BJ (2006) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9, 268274.
  • 29
    Baumbach J, Wittkop T, Kleindt CK & Tauch A (2009) Integrated analysis and reconstruction of microbial transcriptional gene regulatory networks using CoryneRegNet. Nat Protoc 4, 9921005.
  • 30
    Brune I, Brinkrolf K, Kalinowski J, Pühler A & Tauch A (2005) The individual and common repertoire of DNA-binding transcriptional regulators of Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium diphtheriae and Corynebacterium jeikeium deduced from the complete genome sequences. BMC Genomics 6, 86.
  • 31
    Liebl W (2005) Corynebacterium taxonomy. In Handbook of Corynebacterium Glutamicum (Eggeling L & Bott M, ed), pp. 934. CRC Press, Boca Raton, FL.
  • 32
    Kim JS & Holmes RK (2012) Characterization of OxyR as a negative transcriptional regulator that represses catalase production in Corynebacterium diphtheriae. PLoS ONE 7, e31709.
  • 33
    Inui M, Suda M, Okino S, Nonaka H, Puskás LG, Vertès AA & Yukawa H (2007) Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology 153, 24912504.
  • 34
    Teramoto H, Inui M & Yukawa H (2012) Corynebacterium glutamicum CsoR acts as a transcriptional repressor of two copper/zinc-inducible P1B-type ATPase operons. Biosci Biotechnol Biochem 76, 19521958.
  • 35
    Maddocks SE & Oyston PC (2008) Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154, 36093623.
  • 36
    Pátek M & Nešvera J (2011) Sigma factors and promoters in Corynebacterium glutamicum. J Biotechnol 154, 101113.
  • 37
    Pátek M, Nešvera J, Guyonvarch A, Reyes O & Leblon G (2003) Promoters of Corynebacterium glutamicum. J Biotechnol 104, 311323.
  • 38
    Hahn JS, Oh SY & Roe JH (2002) Role of OxyR as a peroxide-sensing positive regulator in Streptomyces coelicolor A3(2). J Bacteriol 184, 52145222.
  • 39
    Dhandayuthapani S, Mudd M & Deretic V (1997) Interactions of OxyR with the promoter region of the oxyR and ahpC genes from Mycobacterium leprae and Mycobacterium tuberculosis. J Bacteriol 179, 24012409.
  • 40
    Págan-Ramos E, Master SS, Pritchett CL, Reimschuessel R, Trucksis M, Timmins GS & Deretic V (2006) Molecular and physiological effects of mycobacterial oxyR inactivation. J Bacteriol 188, 26742680.
  • 41
    den Hengst CD & Buttner MJ (2008) Redox control in actinobacteria. Biochim Biophys Acta 1780, 12011216.
  • 42
    Zahrt TC, Song J, Siple J & Deretic V (2001) Mycobacterial FurA is a negative regulator of catalase–peroxidase gene katG. Mol Microbiol 39, 11741185.
  • 43
    Pym AS, Domenech P, Honoré N, Song J, Deretic V & Cole ST (2001) Regulation of catalase-peroxidase (KatG) expression, isoniazid sensitivity and virulence by furA of Mycobacterium tuberculosis. Mol Microbiol 40, 879889.
  • 44
    Hahn JS, Oh SY, Chater KF, Cho YH & Roe JH (2000) H2O2-sensitive fur-like repressor CatR regulating the major catalase gene in Streptomyces coelicolor. J Biol Chem 275, 3825438260.
  • 45
    Martinez A & Kolter R (1997) Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J Bacteriol 179, 51885194.
  • 46
    Zhao G, Ceci P, Ilari A, Giangiacomo L, Laue TM, Chiancone E & Chasteen ND (2002) Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli. J Biol Chem 277, 2768927696.
  • 47
    Almirón M, Link AJ, Furlong D & Kolter R (1992) A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev 6, 26462654.
  • 48
    Calhoun LN & Kwon YM (2011) Structure, function and regulation of the DNA-binding protein Dps and its role in acid and oxidative stress resistance in Escherichia coli: a review. J Appl Microbiol 110, 375386.
  • 49
    Brune I, Werner H, Hüser AT, Kalinowski J, Pühler A & Tauch A (2006) The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum. BMC Genomics 7, 21.
  • 50
    Wennerhold J & Bott M (2006) The DtxR regulon of Corynebacterium glutamicum. J Bacteriol 188, 29072918.
  • 51
    Wennerhold J, Krug A & Bott M (2005) The AraC-type regulator RipA represses aconitase and other iron proteins from Corynebacterium under iron limitation and is itself repressed by DtxR. J Biol Chem 280, 4050040508.
  • 52
    Bott M & Niebisch A (2003) The respiratory chain of Corynebacterium glutamicum. J Biotechnol 104, 129153.
  • 53
    Nishimura T, Teramoto H, Inui M & Yukawa H (2011) Gene expression profiling of Corynebacterium glutamicum during anaerobic nitrate respiration: induction of the SOS response for cell survival. J Bacteriol 193, 13271333.
  • 54
    Schröder J & Tauch A (2010) Transcriptional regulation of gene expression in Corynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol Rev 34, 685737.
  • 55
    Ehira S, Teramoto H, Inui M & Yukawa H (2009) Regulation of Corynebacterium glutamicum heat shock response by the extracytoplasmic-function sigma factor SigH and transcriptional regulators HspR and HrcA. J Bacteriol 191, 29642972.
  • 56
    Nakunst D, Larisch C, Hüser AT, Tauch A, Pühler A & Kalinowski J (2007) The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes. J Bacteriol 189, 46964707.
  • 57
    Ehira S, Ogino H, Teramoto H, Inui M & Yukawa H (2009) Regulation of quinone oxidoreductase by the redox-sensing transcriptional regulator QorR in Corynebacterium glutamicum. J Biol Chem 284, 1673616742.
  • 58
    Ehira S, Teramoto H, Inui M & Yukawa H (2010) A novel redox-sensing transcriptional regulator CyeR controls expression of an Old Yellow Enzyme family protein in Corynebacterium glutamicum. Microbiology 156, 13351341.
  • 59
    Bussmann M, Baumgart M & Bott M (2010) RosR (Cg1324), a hydrogen peroxide-sensitive MarR-type transcriptional regulator of Corynebacterium glutamicum. J Biol Chem 285, 2930529318.
  • 60
    Yukawa H, Omumasaba CA, Nonaka H, Kós P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, et al. (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153, 10421058.
  • 61
    Suzuki N, Okai N, Nonaka H, Tsuge Y, Inui M & Yukawa H (2006) High-throughput transposon mutagenesis of Corynebacterium glutamicum and construction of a single-gene disruptant mutant library. Appl Environ Microbiol 72, 37503755.
  • 62
    Teramoto H, Shirai T, Inui M & Yukawa H (2008) Identification of a gene encoding a transporter essential for utilization of C4 dicarboxylates in Corynebacterium glutamicum. Appl Environ Microbiol 74, 52905296.
  • 63
    Teramoto H, Suda M, Inui M & Yukawa H (2010) Regulation of the expression of genes involved in NAD de novo biosynthesis in Corynebacterium glutamicum. Appl Environ Microbiol 76, 54885495.
  • 64
    Vertès AA, Inui M, Kobayashi M, Kurusu Y & Yukawa H (1993) Presence of mrr- and mcr-like restriction systems in coryneform bacteria. Res Microbiol 144, 181185.
  • 65
    Sambrook J, Fritsch EF & Maniatis T (1989) Molecular Cloning. Cold Spring Harbor Laboratory Prss, Cold Spring Harbor, NY.
  • 66
    Nakata K, Inui M, Kos PB, Vertès AA & Yukawa H (2003) Vectors for the genetics engineering of corynebacteria. In Fermentation Biotechnology (Saha BC, ed), pp. 175191. American Chemical Society, Washington, DC.
  • 67
    Teramoto H, Inui M & Yukawa H (2012) NdnR is an NAD-responsive transcriptional repressor of the ndnR operon involved in NAD de novo biosynthesis in Corynebacterium glutamicum. Microbiology 158, 975982.