SEARCH

SEARCH BY CITATION

References

  • 1
    Nobelprize.org. The Nobel Prize in Physiology or Medicine 1901. http://www.nobelprize.org/nobel_prizes/medicine/laureates/1901/.
  • 2
    Choe S, Bennett MJ, Fujii G, Curmi PM, Kantardjieff KA, Collier RJ & Eisenberg D (1992) The crystal structure of diphtheria toxin. Nature 357, 216222.
  • 3
    Honjo T, Nishizuka Y & Hayaishi O (1968) Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis. J Biol Chem 243, 35533555.
  • 4
    Kohno K, Uchida T, Ohkubo H, Nakanishi S, Nakanishi T, Fukui T, Ohtsuka E, Ikehara M & Okada Y (1986) Amino acid sequence of mammalian elongation factor 2 deduced from the cDNA sequence: homology with GTP-binding proteins. Proc Natl Acad Sci USA 83, 49784982.
  • 5
    Jorgensen R, Yates SP, Teal DJ, Nilsson J, Prentice GA, Merrill AR & Andersen GR (2004) Crystal structure of ADP-ribosylated ribosomal translocase from Saccharomyces cerevisiae. J Biol Chem 279, 4591945925.
  • 6
    Brekke OH & Sandlie I (2003) Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat Rev Drug Discov 2, 5262.
  • 7
    De Genst E, Silence K, Decanniere K, Conrath K, Loris R, Kinne J, Muyldermans S & Wyns L (2006) Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci USA 103, 45864591.
  • 8
    Wesolowski J, Alzogaray V, Reyelt J, Unger M, Juarez K, Urrutia M, Cauerhff A, Danquah W, Rissiek B, Scheuplein F et al. (2009) Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Med Microbiol Immunol 198, 157174.
  • 9
    Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N & Hamers R (1993) Naturally occurring antibodies devoid of light chains. Nature 363, 446448.
  • 10
    Muyldermans S (2001) Single domain camel antibodies: current status. J Biotechnol 74, 277302.
  • 11
    Holliger P & Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23, 11261136.
  • 12
    Desmyter A, Transue TR, Ghahroudi MA, Thi MH, Poortmans F, Hamers R, Muyldermans S & Wyns L (1996) Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat Struct Biol 3, 803811.
  • 13
    Lauwereys M, Arbabi Ghahroudi M, Desmyter A, Kinne J, Hölzer W, De Genst E, Wyns L & Muyldermans S (1998) Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J 17, 35123520.
  • 14
    Wu TT, Johnson G & Kabat EA (1993) Length distribution of CDRH3 in antibodies. Proteins 16, 17.
  • 15
    Harmsen MM & De Haard HJ (2007) Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 77, 1322.
  • 16
    Muyldermans S, Cambillau C & Wyns L (2001) Recognition of antigens by single-domain antibody fragments: the superfluous luxury of paired domains. Trends Biochem Sci 26, 230235.
  • 17
    Pini A & Bracci L (2000) Phage display of antibody fragments. Curr Protein Pept Sci 1, 155169.
  • 18
    Hoogenboom HR (2005) Selecting and screening recombinant antibody libraries. Nat Biotechnol 23, 11051116.
  • 19
    Muyldermans S, Baral TN, Retamozzo VC, De Baetselier P, De Genst E, Kinne J, Leonhardt H, Magez S, Nguyen VK, Revets H et al. (2009) Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol 128, 178183.
  • 20
    Saerens D, Ghassabeh GH & Muyldermans S (2008) Single-domain antibodies as building blocks for novel therapeutics. Curr Opin Pharmacol 8, 600608.
  • 21
    Coppieters K, Dreier T, Silence K, De Haard H, Lauwereys M, Casteels P, Beirnaert E, Jonckheere H, Van de Wiele C, Staelens L et al. (2006) Formatted anti-tumor necrosis factor alpha VHH proteins derived from camelids show superior potency and targeting to inflamed joints in a murine model of collagen-induced arthritis. Arthritis Rheum 54, 18561866.
  • 22
    Gueorguieva D, Li S, Walsh N, Mukerji A, Tanha J & Pandey S (2006) Identification of single-domain, Bax-specific intrabodies that confer resistance to mammalian cells against oxidative-stress-induced apoptosis. FASEB J 20, 26362638.
  • 23
    Alzogaray V, Danquah W, Aguirre A, Urrutia M, Berguer P, Garcia Vescovi E, Haag F, Koch-Nolte F & Goldbaum FA (2011) Single-domain llama antibodies as specific intracellular inhibitors of SpvB, the actin ADP-ribosylating toxin of Salmonella typhimurium. FASEB J 25, 526534.
  • 24
    Jobling SA, Jarman C, Teh MM, Holmberg N, Blake C & Verhoeyen ME (2003) Immunomodulation of enzyme function in plants by single-domain antibody fragments. Nat Biotechnol 21, 7780.
  • 25
    Serruys B, Van Houtte F, Verbrugghe P, Leroux-Roels G & Vanlandschoot P (2009) Llama-derived single-domain intrabodies inhibit secretion of hepatitis B virions in mice. Hepatology 49, 3949.
  • 26
    Van Bockstaele F, Holz JB & Revets H (2009) The development of nanobodies for therapeutic applications. Curr Opin Investig Drugs 10, 12121224.
  • 27
    Aktories K, Barmann M, Ohishi I, Tsuyama S, Jakobs KH & Habermann E (1986) Botulinum C2 toxin ADP-ribosylates actin. Nature 322, 390392.
  • 28
    Hottiger MO, Hassa PO, Luscher B, Schuler H & Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35, 208219.
  • 29
    Koch-Nolte F, Kernstock S, Mueller-Dieckmann C, Weiss MS & Haag F (2008) Mammalian ADP-ribosyltransferases and ADP-ribosylhydrolases. Front Biosci 13, 67166729.
  • 30
    Zhang D, de Souza RF, Anantharaman V, Iyer LM & Aravind L (2012) Polymorphic toxin systems: comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol Direct 7, 18.
  • 31
    de Souza RF & Aravind L (2012) Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions. Mol BioSyst 8, 16611677.
  • 32
    Salmi M & Jalkanen S (2005) Cell-surface enzymes in control of leukocyte trafficking. Nat Rev Immunol 5, 760771.
  • 33
    Zolkiewska A (2005) Ecto-ADP-ribose transferases: cell-surface response to local tissue injury. Physiology (Bethesda) 20, 374381.
  • 34
    Adriouch S, Haag F, Boyer O, Seman M & Koch-Nolte F (2012) Extracellular NAD(+): a danger signal hindering regulatory T cells. Microbes Infect 14, 12841292.
  • 35
    Hubert S, Rissiek B, Klages K, Huehn J, Sparwasser T, Haag F, Koch-Nolte F, Boyer O, Seman M & Adriouch S (2010) Extracellular NAD+ shapes the Foxp3+ regulatory T cell compartment through the ART2–P2X7 pathway. J Exp Med 207, 25612568.
  • 36
    Adriouch S, Bannas P, Schwarz N, Fliegert R, Guse AH, Seman M, Haag F & Koch-Nolte F (2008) ADP-ribosylation at R125 gates the P2X7 ion channel by presenting a covalent ligand to its nucleotide binding site. FASEB J 22, 861869.
  • 37
    Seman M, Adriouch S, Scheuplein F, Krebs C, Freese D, Glowacki G, Deterre P, Haag F & Koch-Nolte F (2003) NAD-induced T cell death: ADP-ribosylation of cell surface proteins by ART2 activates the cytolytic P2X7 purinoceptor. Immunity 19, 571582.
  • 38
    Scheuplein F, Schwarz N, Adriouch S, Krebs C, Bannas P, Rissiek B, Seman M, Haag F & Koch-Nolte F (2009) NAD+ and ATP released from injured cells induce P2X7-dependent shedding of CD62L and externalization of phosphatidylserine by murine T cells. J Immunol 182, 28982908.
  • 39
    Adriouch S, Hubert S, Pechberty S, Koch-Nolte F, Haag F & Seman M (2007) NAD+ released during inflammation participates in T cell homeostasis by inducing ART2-mediated death of naive T cells in vivo. J Immunol 179, 186194.
  • 40
    Scheuplein F, Rissiek B, Driver JP, Chen YG, Koch-Nolte F & Serreze DV (2010) A recombinant heavy chain antibody approach blocks ART2 mediated deletion of an iNKT cell population that upon activation inhibits autoimmune diabetes. J Autoimmun 34, 145154.
  • 41
    Koch-Nolte F, Reyelt J, Schössow B, Schwarz N, Scheuplein F, Rothenburg S, Haag F, Alzogaray V, Cauerhff A & Goldbaum FA (2007) Single domain antibodies from llama effectively and specifically block T cell ecto-ADP-ribosyltransferase ART2.2 in vivo. FASEB J 21, 34903498.
  • 42
    Marschall AL, Frenzel A, Schirrmann T, Schungel M & Dubel S (2011) Targeting antibodies to the cytoplasm. MAbs 3, 316.
  • 43
    Rothbauer U, Zolghadr K, Tillib S, Nowak D, Schermelleh L, Gahl A, Backmann N, Conrath K, Muyldermans S, Cardoso MC et al. (2006) Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat Methods 3, 887889.
  • 44
    Otto H, Tezcan-Merdol D, Girisch R, Haag F, Rhen M & Koch-Nolte F (2000) The spvB gene-product of the Salmonella enterica virulence plasmid is a mono(ADP-ribosyl)transferase. Mol Microbiol 37, 11061115.
  • 45
    Hochmann H, Pust S, von Figura G, Aktories K & Barth H (2006) Salmonella enterica SpvB ADP-ribosylates actin at position arginine-177 – characterization of the catalytic domain within the SpvB protein and a comparison to binary clostridial actin-ADP-ribosylating toxins. Biochemistry 45, 12711277.
  • 46
    Tezcan-Merdol D, Nyman T, Lindberg U, Haag F, Koch-Nolte F & Rhen M (2001) Actin is ADP-ribosylated by the Salmonella enterica virulence-associated protein SpvB. Mol Microbiol 39, 606619.
  • 47
    Margarit SM, Davidson W, Frego L & Stebbins CE (2006) A steric antagonism of actin polymerization by a salmonella virulence protein. Structure 14, 12191229.
  • 48
    DeLano W (2002) The PyMOL User's Manual. DeLano Scientific, San Carlos, CA.