• 1
    Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M et al. (2003) Mutations in the DJ–1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256259.
  • 2
    Taira T, Saito Y, Niki T, Iguchi-Ariga SM, Takahashi K & Ariga H (2004) DJ–1 has a role in antioxidative stress to prevent cell death. EMBO Rep 5, 213218.
  • 3
    Krebiehl G, Ruckerbauer S, Burbulla LF, Kieper N, Maurer B, Waak J, Wolburg H, Gizatullina Z, Gellerich FN, Woitalla D et al. (2010) Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson's disease-associated protein DJ–1. PLoS One 5, e9367.
  • 4
    Chen J, Li L & Chin LS (2010) Parkinson disease protein DJ–1 converts from a zymogen to a protease by carboxyl-terminal cleavage. Hum Mol Genet 19, 23952408.
  • 5
    Subedi KP, Choi D, Kim I, Min B & Park C (2011) Hsp31 of Escherichia coli K–12 is glyoxalase III. Mol Microbiol 81, 926936.
  • 6
    Lee JY, Song J, Kwon K, Jang S, Kim C, Baek K, Kim J & Park C (2012) Human DJ–1 and its homologs are novel glyoxalases. Hum Mol Genet 21, 32153225.
  • 7
    Thornalley PJ (1996) Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification – a role in pathogenesis and antiproliferative chemotherapy. Gen Pharmacol 27, 565573.
  • 8
    Okado-Matsumoto A & Fridovich I (2000) The role of α, β-dicarbonyl compounds in the toxicity of short chain sugars. J Biol Chem 275, 3485334857.
  • 9
    Thornalley PJ, Langborg A & Minhas HS (1999) Formation of glyoxal, methylglyoxal and 3–deoxyglucosone in the glycation of proteins by glucose. Biochem J 344, 109116.
  • 10
    Veena Reddy VS & Sopory SK (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J 17, 385395.
  • 11
    Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M et al. (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40, D1202D1210.
  • 12
    Mustafiz A, Singh AK, Pareek A, Sopory SK & Singla-Pareek SL (2011) Genome-wide analysis of rice and Arabidopsis identifies two glyoxalase genes that are highly expressed in abiotic stresses. Funct Integr Genomics 11, 293305.
  • 13
    Maiti MK, Krishnasamy S, Owen HA & Makaroff CA (1997) Molecular characterization of glyoxalase II from Arabidopsis thaliana. Plant Mol Biol 35, 471481.
  • 14
    Marasinghe GP, Sander IM, Bennett B, Periyannan G, Yang KW, Makaroff CA & Crowder MW (2005) Structural studies on a mitochondrial glyoxalase II. J Biol Chem 280, 4066840675.
  • 15
    Zang TM, Hollman DA, Crawford PA, Crowder MW & Makaroff CA (2001) Arabidopsis glyoxalase II contains a zinc/iron binuclear metal center that is essential for substrate binding and catalysis. J Biol Chem 276, 47884795.
  • 16
    Limphong P, Nimako G, Thomas PW, Fast W, Makaroff CA & Crowder MW (2009) Arabidopsis thaliana mitochondrial glyoxalase 2–1 exhibits β–lactamase activity. Biochemistry 48, 84918493.
  • 17
    Holdorf MM, Owen HA, Lieber SR, Yuan L, Adams N, Dabney-Smith C & Makaroff CA (2012) Arabidopsis ETHE1 encodes a sulfur dioxygenase that is essential for embryo and endosperm development. Plant Physiol 160, 226236.
  • 18
    Xu XM, Lin H, Maple J, Bjorkblom B, Alves G, Larsen JP & Moller SG (2010) The Arabidopsis DJ–1a protein confers stress protection through cytosolic SOD activation. J Cell Sci 123, 16441651.
  • 19
    Lin J, Nazarenus TJ, Frey JL, Liang X, Wilson MA & Stone JM (2011) A plant DJ–1 homolog is essential for Arabidopsis thaliana chloroplast development. PLoS One 6, e23731.
  • 20
    Bateman A, Birney E, Durbin R, Eddy SR, Howe KL & Sonnhammer EL (2000) The Pfam protein families database. Nucleic Acids Res 28, 263266.
  • 21
    Tao X & Tong L (2003) Crystal structure of human DJ–1, a protein associated with early onset Parkinson's disease. J Biol Chem 278, 3137231379.
  • 22
    Du X, Choi IG, Kim R, Wang W, Jancarik J, Yokota H & Kim SH (2000) Crystal structure of an intracellular protease from Pyrococcus horikoshii at 2–Å resolution. Proc Natl Acad Sci USA 97, 1407914084.
  • 23
    Bandyopadhyay S & Cookson MR (2004) Evolutionary and functional relationships within the DJ1 superfamily. BMC Evol Biol 4, 6.
  • 24
    Wilson MA, Ringe D & Petsko GA (2005) The atomic resolution crystal structure of the YajL (ThiJ) protein from Escherichia coli: a close prokaryotic homologue of the Parkinsonism-associated protein DJ–1. J Mol Biol 353, 678691.
  • 25
    Mizote T, Tsuda M, Smith DD, Nakayama H & Nakazawa T (1999) Cloning and characterization of the thiD/J gene of Escherichia coli encoding a thiamin-synthesizing bifunctional enzyme, hydroxymethylpyrimidine kinase/phosphomethylpyrimidine kinase. Microbiology 145, 495501.
  • 26
    Wei Y, Ringe D, Wilson MA & Ondrechen MJ (2007) Identification of functional subclasses in the DJ–1 superfamily proteins. PLoS Comput Biol 3, e10.
  • 27
    Meulener M, Whitworth AJ, Armstrong-Gold CE, Rizzu P, Heutink P, Wes PD, Pallanck LJ & Bonini NM (2005) Drosophila DJ–1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease. Curr Biol 15, 15721577.
  • 28
    Deponte M, Sturm N, Mittler S, Harner M, Mack H & Becker K (2007) Allosteric coupling of two different functional active sites in monomeric Plasmodium falciparum glyoxalase I. J Biol Chem 282, 2841928430.
  • 29
    MacLean MJ, Ness LS, Ferguson GP & Booth IR (1998) The role of glyoxalase I in the detoxification of methylglyoxal and in the activation of the KefB K+ efflux system in Escherichia coli. Mol Microbiol 27, 563571.
  • 30
    Lee C, Kim I, Lee J, Lee KL, Min B & Park C (2010) Transcriptional activation of the aldehyde reductase YqhD by YqhC and its implication in glyoxal metabolism of Escherichia coli K–12. J Bacteriol 192, 42054214.
  • 31
    Deswal R, Chakaravarty TN & Sopory SK (1993) The glyoxalase system in higher plants: regulation in growth and differentiation. Biochem Soc Trans 21, 527530.
  • 32
    Espartero J, Sanchez-Aguayo I & Pardo JM (1995) Molecular characterization of glyoxalase–I from a higher plant; upregulation by stress. Plant Mol Biol 29, 12231233.
  • 33
    Kaundal R, Saini R & Zhao PX (2010) Combining machine learning and homology-based approaches to accurately predict subcellular localization in Arabidopsis. Plant Physiol 154, 3654.
  • 34
    Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D & Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37, 501506.
  • 35
    Thornalley P (2003) Glyoxalase I – structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 31, 13431348.
  • 36
    Kiefer F, Arnold K, Kunzli M, Bordoli L & Schwede T (2009) The SWISS-MODEL repository and associated resources. Nucleic Acids Res 37, D387D392.
  • 37
    Gouet P, Robert X & Courcelle E (2003) ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res 31, 33203323.
  • 38
    Bradford, MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 24854.
  • 39
    Jung HS, Komatsu S, Ikebe M & Craig R (2008) Head–head and head–tail interaction: a general mechanism for switching off myosin II activity in cells. Mol Biol Cell 19, 32343242.
  • 40
    Burgess SA, Walker ML, Thirumurugan K, Trinick J & Knight PJ (2004) Use of negative stain and single-particle image processing to explore dynamic properties of flexible macromolecules. J Struct Biol 147, 247258.
  • 41
    Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78, 16061619.
  • 42
    Fischer H, Polikarpov I & Craievich AF (2004) Average protein density is a molecular-weight-dependent function. Protein Sci 13, 28252828.
  • 43
    Bohm G, Muhr R & Jaenicke R (1992) Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng 5, 191.
  • 44
    Small I, Peeters N, Legeai F & Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N–terminal targeting sequences. Proteomics 4, 15811590.
  • 45
    Claros MG & Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241, 779786.