SEARCH

SEARCH BY CITATION

References

  • 1
    World Health Statistics (2011) The World Health Organization. (http://who.int/mediacentre/factsheets/fs310/en/).
  • 2
    Bredt DS & Snyder SH (1990) Isolation of nitric oxide synthase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA 87, 682685.
  • 3
    Pollock JS, Nakane M, Buttery LK, Martinez A, Springall D, Polak JM, Forstermann U & Murad F (1993) Characterization and localization of endothelial nitric oxide synthase using specific monoclonal antibodies. Am J Physiol 265, C1379C1387.
  • 4
    Kleinert H, Boissel JP, Schwarz PM & Forstermann U (2000) Regulation of the expression of nitric oxide synthase isoforms. In Nitric Oxide: Biology and Pathobiology (Ignaro LJ ed.), pp. 105128. Academic Press, London.
  • 5
    Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82, 4795.
  • 6
    Gnaiger E, Steinlechner-Maran R, Mendez G, Eberl T & Margreiter R (1995) Control of mitochondrial and cellular respiration by oxygen. J Bioenerg Biomembr 27, 583596.
  • 7
    Brown GC & Cooper CE (1994) Nanomolar concentrations of NO reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett 356, 295298.
  • 8
    Brown GC (1999) Nitric oxide and mitochondrial respiration. Biochim Biophys Acta 1411, 351369.
  • 9
    Santolini J, Meade AL & Stuehr DJ (2001) Differences in three kinetic parameters underpin the unique catalytic profiles of nitric-oxide synthases I, II, and III. J Biol Chem 276, 4888748898.
  • 10
    Robinson JM & Lancaster JR (2005) Hemoglobin-mediated, hypoxia-induced vasodilation via nitric oxide: mechanism(s) and physiologic versus pathophysiologic relevance. Am J Respir Cell Mol Biol 32, 257261.
  • 11
    Borutaite V, Moncada S & Brown GC (2005) Nitric oxide from inducible nitric oxide synthase sensitizes the inflamed aorta to hypoxic damage via respiratory inhibition. Shock 23, 319323.
  • 12
    Mander P, Borutaite V, Moncada S & Brown GC (2005) Nitric oxide from inflammatory-activated glia synergizes with hypoxia to induce neuronal death. J Neurosci Res 79, 208215.
  • 13
    Saha RN & Pahan K (2006) Regulation of inducible nitric oxide synthase gene in glial cells. Antioxid Redox Signal 8, 929947.
  • 14
    Pannu R & Singh I (2006) Pharmacological strategies for the regulation of inducible nitric oxide synthase: neurodegenerative versus neuroprotective mechanisms. Neurochem Int 49, 170182.
  • 15
    Vejlstrup NG, Bouloumie A, Boesgaard S et al. (1998) Inducible nitric oxide synthase (iNOS) in the human heart: expression and localization in congestive heart failure. J Mol Cell Cardiol, 30, 12151223.
  • 16
    Haywood GA, Tsao PS, Von der Leyen HE, Mann MJ, Keeling PJ, Trindade PT, Lewis NP, Byrne CD, Rickenbacher PR, Bishopric NH et al. (1996) Expression of inducible nitric oxide synthase in human heart failure. Circulation 93, 10871094.
  • 17
    Borutaite V, Morkuniene R, Arandarcikaite O, Jekabsone A, Barauskaite J & Brown GC (2009) Nitric oxide protects the heart from ischemia-induced apoptosis and mitochondrial damage via protein kinase G mediated blockage of permeability transition and cytochrome c release. J Biomed Sci 16, 7082.
  • 18
    Heusch G, Post H, Michel MC, Kelm M & Schulz R (2000) Endogenous nitric oxide and myocardial adaptation to ischemia. Circ Res 87, 146152.
  • 19
    Jekabsone A, Neher JJ, Borutaite V & Brown GC (2007) Nitric oxide from neuronal nitric oxide synthase sensitises neurons to hypoxia-induced death via competitive inhibition of cytochrome oxidase. J Neurochem 103, 346356.
  • 20
    Mungrue IN & Bredt DS (2004) nNOS at a glance: implications for brain and brawn. J Cell Sci 117, 26272629.
  • 21
    Brown GC (2010) Nitric oxide and neuronal death. Nitric Oxide 23, 153165.
  • 22
    Dawson VL, Dawson TM, London ED, Bredt DS & Snyder SH (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 88, 63686371.
  • 23
    Dawson VL, Kizushi VM, Huang PL, Snyder SH & Dawson TM (1996) Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. J Neurosci 16, 24792487.
  • 24
    Parathath SR, Gravanis I & Tsirka SE (2007) Nitric oxide synthase isoforms undertake unique roles during excitotoxicity. Stroke 38, 19381945.
  • 25
    Brown GC & Borutaite V (2004) Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim Biophys Acta 1658, 4449.
  • 26
    Borutaite V & Brown GC (2006) S-nitrosothiol inhibition of mitochondrial complex I causes a reversible increase in mitochondrial hydrogen peroxide production. Biochim Biophys Acta 1757, 562566.
  • 27
    Dahm CC, Moore K & Murphy MP (2006) Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria. J Biol Chem 281, 1005610065.
  • 28
    Murphy MP (2009) How mitochondria produce reactive oxygen species? Biochem J 417, 105111.
  • 29
    Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46, 821831.
  • 30
    Di Lisa F & Bernardi P (2006) Mitochondria and ischemia–reperfusion injury of the heart: fixing a hole. Cardiovasc Res 70, 191199.
  • 31
    Duchen MR, McGuinness O, Brown LA & Crompton M (1993) On the involvement of a cyclosporin A sensitive mitochondrial pore in myocardial reperfusion injury. Cardiovasc Res 27, 17901794.
  • 32
    Griffiths EJ & Halestrap AP (1993) Protection by cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol 25, 14611469.
  • 33
    Reimer KA, Jennings RB (1992). Myocardial ischemia, hypoxia, and infarction. In: The Heart and Cardiovascular System. Second edition (Fozzard HA et al. ), pp. 18751973. Raven Press, New York.
  • 34
    Piper HM, Noll T & Siegmund B (1994) Mitochondrial function in oxygen depleted and reoxygenated myocardium. Cardiovasc Res 28, 115.
  • 35
    Toleikis A, Dzeja P & Prashkiavichus A (1989) Functional state and the mechanism of mitochondrial injury of ischemic heart. Sov Med Rev A Cardiol 2, 95132.
  • 36
    Rouslin W & Broge CW (1996) IF1 function in situ in uncoupler-challenged ischemic rabbit, rat, and pigeon hearts. J Biol Chem 271, 2363823641.
  • 37
    Faccenda D & Campanella M (2012) Molecular regulation of the mitochondrial F(1)F(o)-ATPsynthase: physiological and pathological significance of the inhibitory factor 1 [IF(1)]. Int J Cell Biol 2012, 367934.
  • 38
    Braasch W, Gudbjarnason S, Puri PS, Ravens KG & Bing RJ (1968) Early changes in energy metabolism in the myocardium following acute coronary artery occlusion in anesthetized dogs. Circ Res 23, 429438.
  • 39
    Jennings RB, Hawkins HK, Lowe JE, Hill ML, Klotman S & Reimer KA (1978) Relation between high-energy phosphate and lethal injury in myocardial ischemia in the dog. Am J Pathol 92, 187214.
  • 40
    Jennings RB, Reimer KA, Hill ML & Mayer SE (1981) Total ischemia in dog hearts in vitro. 1. Comparison of high-energy phosphate production, utilization and depletion and of adenine nucleotide catabolism in total ischemia in vitro vs severe ischemia in vitro. Circ Res 49, 892900.
  • 41
    Imai S, Katano Y, Shimamoto N & Sakai K (1979) Energy metabolism in ischemic myocardium as studied in the isolated perfused guinea pig heart. In Ischemic Myocardium and Antianginal Drugs (Winbury MM & Abiko Y, eds), 3, pp. 185199. Raven Press, New York.
  • 42
    Kloner RA, Deboer LWV, Darsee JR, Ingwall JS & Braunwald E (1981) Recovery from prolonged abnormalities of canine myocardium salvaged from ischemic necrosis by coronary reperfusion. Proc Natl Acad Sci USA 78, 71527156.
  • 43
    Tapuria N, Kumar Y, Habib MM, Abu Amara M, Seifalian AM & Davidson BR (2008) Remote ischemic preconditioning: a novel protective method from ischemia reperfusion injury. J Surg Res 150, 304330.
  • 44
    Wood JM, Hanley HG, Entman ML, Hartley CJ, Swain JA, Busch U, Chang CH & Lewis RM (1979) Biochemical and morphological correlates of acute experimental myocardial ischemia in the dog. IV. Energy mechanisms during very early ischemia. Circ Res 44, 5261.
  • 45
    Nagao T, Matlib MA, Franklin D, Millard RW & Schwartz A (1980) Effects of diltiazem, a calcium antagonist, on regional myocardial function and mitochondria after brief coronary occlusion. J Mol Cell Cardiol 12, 2943.
  • 46
    Constantinescu S, Filipescu G, Laky D, Constantinescu NM, Ratea E & Halalau F (1978) Biochemical and ultrastructural alterations of the mitochondrial fraction in experimental acute ischemia. Rev Roum Biochem 15, 189195.
  • 47
    Schwartz A, Wood JM, Allen JC, Bornet EP, Entman ML, Goldstein MA, Sordahl LA & Suzuki M (1973) Biochemical and morphologic correlates of cardiac ischemia I. Membrane systems. Am J Cardiol 32, 4661.
  • 48
    Sadek HA, Humphries KM, Szweda PA & Szweda LI (2002) Selective inactivation of redox-sensitive mitochondrial enzymes during cardiac reperfusion. Arch Biochem Biophys 406, 222228.
  • 49
    Shug AL, Shrago E, Bittar N, Folts D & Koke JR (1975) Acyl-CoA inhibition of adenine nucleotide translocation in ischemic myocardium. Am J Physiol 228, 689692.
  • 50
    Rouslin W (1983) Mitochondrial complexes I, II, III, IV and V in myocardial ischemia and autolysis. Am J Physiol 244, H743H748.
  • 51
    Geshi E, Konno N, Yanagishita T & Katagiri T (1988) Impairment of mitochondrial respiratory activity in the early ischemic myocardium – with special reference to electron transport system. Jpn Circ J 52, 535542.
  • 52
    Matsuzaki S, Szweda LI & Humphries KM (2009) Mitochondrial superoxide production and respiratory activity: biphasic response to ischemic duration. Arch Biochem Biophys 484, 8793.
  • 53
    Hardy L, Clark JB, Darley-Usmar VM, Smith DR & Stone D (1991) Reoxygenation-dependent decrease in mitochondrial NADH:CoQ reductase (complex I) activity in the hypoxic/reoxygenated rat heart. Biochem J 274, 133137.
  • 54
    Lesnefsky EJ, Tandler B, Ye J, Slabe TJ, Turkaly J & Hoppel CL (1997) Myocardial ischemia decreases oxidative phosphorylation through cytochrome oxidase in subsarcolemmal mitochondria. Am J Physiol 273, H1544H1554.
  • 55
    Sims NR & Anderson MF (2002) Mitochondrial contributions to tissue damage in stroke. Neurochem Int 40, 511526.
  • 56
    Hillered L, Siesjo BK & Arfors KE (1984) Mitochondrial response to transient forebrain ischemia and recirculation in the rat. J Cereb Blood Flow Metab 4, 438446.
  • 57
    Sims NR & Pulsinelli WA (1987) Altered mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat. J Neurochem 49, 13671374.
  • 58
    Sims NR (1991) Selective impairment of respiration in mitochondria isolated from brain subregions following transient forebrain ischemia in the rat. J Neurochem 56, 18361844.
  • 59
    Sims NR, Williams VK, Zaidan E & Powell JA (1998) The antioxidant defenses of brain mitochondria during short-term forebrain ischemia and recirculation in the rat. Mol Brain Res 60, 141149.
  • 60
    Zaidan E & Sims NR (1993) Selective reductions in the activity of the pyruvate dehydrogenase complex in mitochondria isolated from brain subregions following forebrain ischemia in rats. J Cereb Blood Flow Metab 13, 98104.
  • 61
    Zaidan E & Sims NR (1997) Reduced activity of the pyruvate dehydrogenase complex but not cytochrome c oxidase is associated with neuronal loss in the striatum following short-term forebrain ischemia. Brain Res 772, 2328.
  • 62
    Bogaert YE, Rosenthal RE & Fiskum G (1994) Post-ischemic inhibition of cerebral cortex pyruvate dehydrogenase. Free Radic Biol Med 16, 811820.
  • 63
    Kuroda S, Katsura KI, Tsuchidate R & Siesjo BK (1996) Secondary bioenergetic failure after transient focal ischemia is due to mitochondrial injury. Acta Physiol Scand 156, 149150.
  • 64
    Nakai A, Kuroda S, Kristian A & Siesjo BK (1997) The immunosuppressant drug FK-506 ameliorates secondary mitochondrial dysfunction following transient focal cerebral ischemia in the rat. Neurobiol Dis 4, 288300.
  • 65
    Nicholls DG, Johnson-Cadwell L, Vesce S, Jekabsons M & Yadava N (2007) Bioenergetics of mitochondria in cultured neurons and their role in glutamate excitotoxicity. J Neurosci Res 85, 32063212.
  • 66
    Polster BM, Basañez G, Etxebarria A, Hardwick JM & Nicholls DG (2005) Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J Biol Chem 280, 64476454.
  • 67
    Cao G, Xing J, Xiao X, Liou AK, Gao Y, Yin XM, Clark RS, Graham SH & Chen J (2007) Critical role of calpain I in mitochondrial release of apoptosis-inducing factor in ischemic neuronal injury. J Neurosci 27, 92789293.
  • 68
    Flameng W, Andres J, Ferdinande P, Mattheussen M & Van Belle H (1991) Mitochondrial function in myocardial stunning. J Mol Cell Cardiol 23, 111.
  • 69
    Lesnefsky EJ, Chen Q, Slabe TJ, Stoll MS, Minkler PE, Hassan MO, Tandler B & Hoppel CL (2004) Ischemia, rather than reperfusion, inhibits respiration through cytochrome oxidase in the isolated, perfused rabbit heart: role of cardiolipin. Am J Physiol Heart Circ Physiol 287, H258H267.
  • 70
    Allen KL, Almeida A, Bates TE & Clark JB (1995) Changes of respiratory chain activity in mitochondrial and synaptosomal fractions isolated from the gerbil brain after graded ischemia. J Neurochem 64, 22222229.
  • 71
    Chomova M, Tatarkova Z, Dobrota D & Racay P (2013) Ischemia-induced inhibition of mitochondrial complex I in rat brain: effect of permeabilization method and electron acceptor. Neurochem Res 37, 965976.
  • 72
    Phillis JW & O'Regan MH (2004) A potentially critical role of phospholipases in central nervous system ischemic, traumatic, and neurodegenerative disorders. Brain Res Rev 44, 1347.
  • 73
    White MC & McHowat J (2007) The therapeutic potential of phospholipase A2 inhibitors in cardiovascular disease. Cardiovasc Hematol Agents Med Chem 5, 9195.
  • 74
    Spencer TL, See JK & Bygrave FL (1976) Translocation and binding of adenine nucleotides by rat liver mitochondria partially depleted of phospholipids. Biochim Biophys Acta 423, 365375.
  • 75
    Hattori M, Ogawa K, Satake T, Sugiyama S & Ozawa T (1985) Depletion of membrane phospholipid and mitochondrial dysfunction associated with coronary reperfusion. Basic Res Cardiol 80, 241250.
  • 76
    Ekholm R, Kerstell J, Olson R, Rudenstam CM & Svanborg A (1968) Morphologic and biochemical studies of dog heart mitochondria after short periods of ischemia. Am J Cardiol 22, 312318.
  • 77
    Vasdev SC, Kako KJ & Biro GP (1979) Phospholipid composition of cardiac mitochondria and lysosomes in experimental myocardial ischemia in the dog. J Mol Cell Cardiol 11, 11951200.
  • 78
    Lesnefsky EJ, Chen Q, Moghaddas S, Hassan MO, Tandler B & Hoppel CL (2004) Blockade of electron transport during ischemia protects cardiac mitochondria. J Biol Chem 279, 4796147967.
  • 79
    Hoch FL (1992) Cardiolipins and biomembrane function. Biochim Biophys Acta 1113, 71133.
  • 80
    Hatch GM (1998) Cardiolipin: biosynthesis, remodeling and trafficking in the heart and mammalian cells. Int J Mol Med 1, 3341.
  • 81
    Prinzen FW, Van der Vusse GJ, Arts T, Roemen THM, Coumans WA & Reneman RS (1984) Accumulation of nonesterified fatty acids in ischemic canine myocardium. Am J Physiol 247, H264H272.
  • 82
    Van der Vusse GJ, Reneman RS & Van Bilsen M (1997) Accumulation of arachidonic acid in ischemic/reperfused cardiac tissue: possible causes and consequences. Prostagland Leukot Essent Fatty Acids 57, 8593.
  • 83
    Yasuda H, Kishiro K, Izumi N & Nakanishi M (1985) Biphasic liberation of arachidonic and stearic acids during cerebral ischemia. J Neurochem 45, 168172.
  • 84
    Cocco T, Di Paola M, Papa S & Lorusso M (1999) Arachidonic acid interaction with the mitochondrial electron transport chain promotes reactive oxygen species generation. Free Radic Biol Med 27, 5159.
  • 85
    Borutaite V, Morkuniene R, Budriunaite A, Krasauskaite D, Ryselis S, Toleikis A & Brown GC (1996) Kinetic analysis of changes in activity of heart mitochondrial oxidative phosphorylation system induced by ischemia. J Mol Cell Cardiol 28, 21952201.
  • 86
    Borutaite V, Mildaziene V, Brown GC & Brand MD (1995) Control and kinetic analysis of ischemia-damaged heart mitochondria: which parts of the oxidative phosphorylation system are affected by ischemia? Biochim Biophys Acta 1272, 154158.
  • 87
    Di Paola M, Cocco T & Lorusso M (2000) Arachidonic acid causes cytochrome c release from heart mitochondria. Biochem Biophys Res Commun 277, 128133.
  • 88
    Di Paola M, Zaccagnino P, Oliveros-Celis C & Lorusso M (2006) Arachidonic acid induces specific membrane permeability increase in heart mitochondria. FEBS Lett 580, 775781.
  • 89
    Nakahara I, Kikuchi H, Taki V, Nishi S, Kito M, Yonekawa Y, Goto Y & Ogata N (1992) Changes in major phospholipids of mitochondria during postischemic reperfusion in rat brain. J Neurosurg 76, 244250.
  • 90
    Kintner DB, Fitzpatrick JH & Gilboe DD (1997) Hyperglycemic damage to mitochondrial membranes during cerebral ischemia: amelioration by platelet-activating factor antagonist BN 50739. J Neurochem 69, 12191227.
  • 91
    Sun D & Gilboe DD (1994) Ischemia-induced changes in cerebral mitochondrial free fatty acids, phopholipids, and respiration in the rat. J Neurochem 62, 19211928.
  • 92
    Skulachev VP (1998) Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta 1363, 100124.
  • 93
    Efremov RG & Sazanov LA (2011) Respiratory complex I: ‘steam engine’ of the cell? Curr Opin Struct Biol 21, 532540.
  • 94
    Schapira AH (2010) Complex I: inhibitors, inhibition and neurodegeneration. Exp Neurol 224, 331335.
  • 95
    Turrens JF & Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191, 421427.
  • 96
    St-Pierre J, Buckingham JA, Roebuck SJ & Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277, 4478444790.
  • 97
    Fontaine E, Eriksson O, Ichas F & Bernardi P (1998) Regulation of the permeability transition pore in skeletal muscle mitochondria. Modulation by electron flow through the respiratory chain complex I. J Biol Chem 273, 1266212668.
  • 98
    Chauvin C, De Oliveira F, Ronot X, Mousseau M, Leverve X & Fontain E (2001) Rotenone inhibits the mitochondrial permeability transition-induced cell death in U937 and KB cells. J Biol Chem 276, 4139441398.
  • 99
    Schagger H & Pfeiffer K (2001) The ratio of oxidative phosphorylation complexes I–V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J Biol Chem 276, 3786137867.
  • 100
    Musatov A & Robinson NC (2012) Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase. Free Radic Res 46, 13131326.
  • 101
    Turrens JF, Beconi M, Barilla J, Chavez UB & McCord JM (1991) Mitochondrial generation of oxygen radicals during reoxygenation of ischemic tissues. Free Radic Res Commun 12–13, 681689.
  • 102
    Sadek HA, Szweda PA & Szweda LI (2004) Modulation of mitochondrial complex I activity by reversible Ca2+ and NADH mediated superoxide anion dependent inhibition. Biochemistry 43, 84948502.
  • 103
    Matsuzaki S & Szweda LI (2007) Inhibition of complex I by Ca2+ reduces electron transport activity and the rate of superoxide anion production in cardiac submitochondrial particles. Biochemistry 46, 13501357.
  • 104
    Taylor SW, Fahy E, Murray J, Capaldi RA & Ghosh SS (2003) Oxidative post-translational modification of tryptophan residues in cardiac mitochondrial proteins. J Biol Chem 22, 1958719590.
  • 105
    Paradies G, Petrosillo G, Pistolese M & Ruggiero FM (2002) Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene 286, 135141.
  • 106
    Han F, Da T, Riobo NA & Becker LB (2008) Early mitochondrial dysfunction in electron transfer activity and reactive oxygen species generation following cardiac arrest. Crit Care Med 36, S447S453.
  • 107
    Burwell LS, Nadtochiy SM, Tompkins AJ, Young S & Brookes PS (2006) Direct evidence for S-nitrosation of mitochondrial complex I. Biochem J 394, 627634.
  • 108
    Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Federici A & Ruggiero FM (2004) Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ Res 94, 5359.
  • 109
    Chen Q, Hoppel CL & Lesnefsky EJ (2006) Blockade of electron transport before cardiac ischemia with the reversible inhibitor amobarbital protects rat heart mitochondria. J Pharmacol Exp Ther 316, 200207.
  • 110
    Hanley PJ, Mickel M, Loffler M, Brandt U & Daut J (2002) KATP channel-independent targets of diazoxide and 5-hydroxydecanoate in the heart. J Physiol 542, 735741.
  • 111
    Chen Q, Moghaddas S, Hoppel CL & Lesnefsky EJ (2008) Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria. Am J Physiol Cell Physiol 294, C460C466.
  • 112
    Wyatt KM, Skene C, Veitch K, Hue L & McCormack JG (1995) The antianginal agent ranolazine is a weak inhibitor of the respiratory complex I, but with greater potency in broken or uncoupled than in coupled mitochondria. Biochem Pharmacol 50, 15991606.
  • 113
    Nadtochiy SM, Burwell LS & Brookes PC (2007) Cardioprotection and mitochondrial S-nitrosation: effects of S-nitroso-2-mercaptopropionyl glycine (SNO-MPG) in cardiac ischemia–reperfusion injury. J Mol Cell Cardiol 42, 812825.
  • 114
    Prime TA, Blaikie FH, Evans C, Nadtochiy SM, James AM, Dahm CC, Vitturi DA, Patel RP, Hiley CR, Abakumova I et al. (2009) A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia–reperfusion injury. Proc Natl Acad Sci USA 106, 1076410769.
  • 115
    Costa ADT & Garlid KD (2008) Intramitochondrial signaling: interactions among mitoKATP, PKCε, ROS, and MPT. Am J Physiol Heart Circ Physiol 295, H874H882.
  • 116
    Costa AD, Jakob R, Costa CL, Andrukhiv K, West IC & Garlid KD (2006) The mechanism by which the mitochondrial ATP-sensitive K+ channel opening and H2O2 inhibit the mitochondrial permeability transition. J Biol Chem 281, 2080120808.
  • 117
    Murfitt RR, Stiles JW, Powell WMJ & Sanadi DR (1978) Experimental myocardial ischemia characteristics of isolated mitochondria subpopulations. J Mol Cell Cardiol 10, 109123.
  • 118
    Borutaite V, Jekabsone A, Morkuniene R & Brown GC (2003) Inhibition of mitochondrial permeability transition prevents mitochondrial dysfunction, cytochrome c release and apoptosis induced by heart ischemia. J Mol Cell Cardiol 35, 357366.
  • 119
    Pasdois P, Parker JE, Griffiths EJ & Halestrap AP (2011) The role of oxidized cytochrome c in regulating mitochondrial reactive oxygen species production and its perturbation in ischaemia. Biochem J 436, 493505.
  • 120
    Veksler VI, Kuznetsov AV, Sharov VG, Kapelko VI & Saks VA (1987) Mitochondrial respiratory parameters in cardiac tissue: a novel method of assessment by using saponin-skinned fibers. Biochim Biophys Acta 892, 191196.
  • 121
    Chen Q, Yin G, Stewart S, Hu Y & Lesnefsky EJ (2010) Isolating the segment of the mitochondrial electron transport chain responsible for mitochondrial damage during cardiac ischemia. Biochem Biophys Res Commun 397, 656660.
  • 122
    Soeda J, Miyagawa S, Sano K, Masumoto J, Taniguchi S & Kawasaki S (2001) Cytochrome c release into cytosol with subsequent caspase activation during warm ischemia in rat liver. Am J Physiol Gastrointest Liver Physiol 281, G1115G1123.
  • 123
    Fujimura M, Morita-Fujimura Y, Murakami K, Kawase M & Chan PH (1998) Cytosolic redistribution of cytochrome c after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 18, 12391247.
  • 124
    Prakasa Babu P, Yoshida Y, Su M, Segura M, Kawamura S & Yasui N (2000) Immunohistochemical expression of Bcl-2, Bax and cytochrome c following focal cerebral ischemia and effect of hypothermia in rat. Neurosci Lett 291, 196200.
  • 125
    Perez-Pinzon MA, Xu GP, Born J, Lorenzo J, Busto R, Rosenthal M & Sick TJ (1999) Cytochrome c is released from mitochondria into the cytosol after cerebral anoxia or ischemia. J Cereb Blood Flow Metab 19, 3943.
  • 126
    Guégan C & Sola B (2000) Early and sequential recruitment of apoptotic effectors after focal permanent ischemia in mice. Brain Res 856, 93100.
  • 127
    Jennings RB, Schaper J, Hill ML, Steenbergen C Jr & Reimer KA (1985) Effect of reperfusion late in the phase of reversible ischemic injury. Changes in cell volume, electrolytes, metabolites, and ultrastructure. Circ Res 56, 262278.
  • 128
    Halestrap AP, Clarke SJ & Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion – a target for cardioprotection. Cardiovasc Res 61, 372385.
  • 129
    Hausenloy DJ, Duchen MR & Yellon DM (2003) Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia–reperfusion injury. Cardiovasc Res 60, 617625.
  • 130
    Chen M, He H, Zhan S, Krajewski S, Reed JC & Gottlieb RA (2001) Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion. J Biol Chem 276, 3072430728.
  • 131
    Xu M, Wang Y, Ayub A & Ashraf M (2001) Mitochondrial K(ATP) channel activation reduces anoxic injury by restoring mitochondrial membrane potential. Am J Physiol Heart Circ Physiol 281, H1295H1303.
  • 132
    Vanden Hoek TL, Qin Y, Wojcik K, Li CQ, Shao ZH, Anderson T, Becker LB & Hamann KJ (2003) Reperfusion, not simulated ischemia, initiates intrinsic apoptosis injury in chick cardiomyocytes. Am J Physiol Heart Circ Physiol 284, H141H150.
  • 133
    Capano M & Crompton M (2006) Bax translocates to mitochondria of heart cells during simulated ischemia: involvement of AMP-activated and p38 mitogen-activated protein kinases. Biochem J 395, 5764.
  • 134
    Capano M & Crompton M (2002) Biphasic translocation of Bax to mitochondria. Biochem J 367, 169178.
  • 135
    Appukuttan A, Kasseckert SA, Micoogullari M, Flacke JP, Kumar S, Woste A, Abdallah Y, Pott L, Reusch HP & Ladilov Y (2012) Type 10 adenylyl cyclase mediates mitochondrial Bax translocation and apoptosis of adult rat cardiomyocytes under simulated ischaemia/reperfusion. Cardiovasc Res 93, 340349.
  • 136
    Lundberg KC & Szweda LI (2004) Initiation of mitochondrial-mediated apoptosis during cardiac reperfusion. Arch Biochem Biophys 432, 5057.
  • 137
    Pasdois P, Parker JE & Halestrap AP (2012) Extent of mitochondrial hexokinase II dissociation during ischemia correlates with mitochondrial cytochrome c release, reactive oxygen species production, and infarct size on reperfusion. J Am Heart Assoc doi:10.1161/JAHA.112.005645.
  • 138
    Zhang D & Armstrong JS (2007) Bax and the mitochondrial permeability transition cooperate in the release of cytochrome c during endoplasmic reticulum-stress-induced apoptosis. Cell Death Differ 14, 703715.
  • 139
    Martinez-Abundis E, Garcia N, Correa F, Franco M & Zazueta C (2007) Changes in specific lipids regulate BAX-induced mitochondrial permeability transition. FEBS J 274, 65006510.
  • 140
    Hovius R, Thijssen J, Van der Linden P, Nicolay K & De Kruijff B (1993) Phospholipid asymmetry of the outer membrane of rat liver mitochondria. Evidence for the presence of cardiolipin on the outside of the outer membrane. FEBS Lett 330, 7176.
  • 141
    Powell GL, Knowles PF & Marsh D (1985) Association of spin-labelled cardiolipin with dimyristoylphosphatidylcholine-substituted bovine heart cyrochrome c oxidase. A generalized specificity increase rather than highly specific binding site. Biochim Biophys Acta 816, 191194.
  • 142
    Rytomaa M & Kinnunen PK (1994) Evidence for two distinct acidic phospholipid-binding sites in cytochrome c. J Biol Chem 269, 17701774.
  • 143
    Ott M, Robertson JD, Gogvadze V, Zhivotovsky B & Orrenius S (2002) Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci USA 99, 12591263.
  • 144
    Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, Osipov AN, Belikova NA et al. (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 1, 223232.
  • 145
    Lucken-Ardjomande S & Martinou JC (2005) Newcomers in the process of mitochondrial permeabilization. J Cell Sci 118, 473483.
  • 146
    Belosludtsev K, Saris NE, Andersson LC, Belosludtseva N, Agafonov A, Sharma A, Moshkov DA & Mironova GD (2006) On the mechanism of palmitic acid-induced apoptosis: the role of a pore induced by palmitic acid and Ca2+ in mitochondria. J Bioenerg Biomembr 38, 113120.