SEARCH

SEARCH BY CITATION

References

  • 1
    Bateman A (1997) The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem Sci 22, 1213.
  • 2
    Hardie DG (2011) AMP-activated protein kinase: a cellular energy sensor with a key role in metabolic disorders and in cancer. Biochem Soc Trans 39, 113.
  • 3
    Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV, Carmena D, Jing C, Walker PA, Eccleston JF, Haire LF et al. (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472, 230233.
  • 4
    Chen L, Wang J, Zhang YY, Yan SF, Neumann D, Schlattner U, Wang ZX & Wu JW (2012) AMP-activated protein kinase undergoes nucleotide-dependent conformational changes. Nat Struct Mol Biol 19, 716718.
  • 5
    Carling D, Thornton C, Woods A & Sanders MJ (2012) AMP-activated protein kinase: new regulation, new roles? Biochem J 445, 1127.
  • 6
    Hardie DG, Ross FA & Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev 13, 251262.
  • 7
    Oakhill JS, Scott JW & Kemp BE (2012) AMPK functions as an adenylate charge-regulated protein kinase. Trends Endocrinol Metab 23, 125132.
  • 8
    Mihaylova MM & Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13, 10161023.
  • 9
    Steinberg GR & Kemp BE (2009) AMPK in health and disease. Physiol Rev 89, 10251078.
  • 10
    Thornton C, Snowden MA & Carling D (1998) Identification of a novel AMP-activated protein kinase beta subunit isoform that is highly expressed in skeletal muscle. J Biol Chem 273, 1244312450.
  • 11
    Chen Z, Heierhorst J, Mann RJ, Mitchelhill KI, Michell BJ, Witters LA, Lynch GS, Kemp BE & Stapleton D (1999) Expression of the AMP-activated protein kinase beta1 and beta2 subunits in skeletal muscle. FEBS Lett 460, 343348.
  • 12
    Winder WW (2001) Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle. J Appl Physiol 91, 10171028.
  • 13
    Dzamko N, Van Denderen BJ, Hevener AL, Jorgensen SB, Honeyman J, Galic S, Chen ZP, Watt MJ, Campbell DJ, Steinberg GR et al. (2010) AMPK beta1 deletion reduces appetite, preventing obesity and hepatic insulin resistance. J Biol Chem 285, 115122.
  • 14
    Dasgupta B & Milbrandt J (2009) AMP-activated protein kinase phosphorylates retinoblastoma protein to control mammalian brain development. Dev Cell 16, 256270.
  • 15
    Galic S, Fullerton MD, Schertzer JD, Sikkema S, Marcinko K, Walkley CR, Izon D, Honeyman J, Chen ZP, Van Denderen BJ et al. (2011) Hematopoietic AMPK beta1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J Clin Invest 121, 49034915.
  • 16
    Steinberg GR, O'Neill HM, Dzamko NL, Galic S, Naim T, Koopman R, Jorgensen SB, Honeyman J, Hewitt K, Chen ZP et al. (2010) Whole body deletion of AMP-activated protein kinase {beta}2 reduces muscle AMPK activity and exercise capacity. J Biol Chem 285, 3719837209.
  • 17
    Dasgupta B, Ju JS, Sasaki Y, Liu X, Jung SR, Higashida K, Lindquist D & Milbrandt J (2012) The AMPK beta2 subunit is required for energy homeostasis during metabolic stress. Mol Cell Biol 32, 28372848.
  • 18
    O'Neill HM, Maarbjerg SJ, Crane JD, Jeppesen J, Jorgensen SB, Schertzer JD, Shyroka O, Kiens B, Van Denderen BJ, Tarnopolsky MA et al. (2011) AMP-activated protein kinase (AMPK) beta1beta2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc Natl Acad Sci USA 108, 1609216097.
  • 19
    Janecek S, Svensson B & Macgregor EA (2011) Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals. Enzyme Microb Technol 49, 429440.
  • 20
    Polekhina G, Gupta A, Van Denderen BJ, Feil SC, Kemp BE, Stapleton D & Parker MW (2005) Structural basis for glycogen recognition by AMP-activated protein kinase. Structure 13, 14531462.
  • 21
    Koay A, Rimmer KA, Mertens HD, Gooley PR & Stapleton D (2007) Oligosaccharide recognition and binding to the carbohydrate binding module of AMP-activated protein kinase. FEBS Lett 581, 50555059.
  • 22
    Koay A, Woodcroft B, Petrie EJ, Yue H, Emanuelle S, Bieri M, Bailey MF, Hargreaves M, Park JT, Park KH et al. (2010) AMPK beta subunits display isoform specific affinities for carbohydrates. FEBS Lett 584, 34993503.
  • 23
    Bieri M, Mobbs JI, Koay A, Louey G, Mok YF, Hatters DM, Park JT, Park KH, Neumann D, Stapleton D et al. (2012) AMP-activated protein kinase beta-subunit requires internal motion for optimal carbohydrate binding. Biophys J 102, 305314.
  • 24
    Wojtaszewski JF, MacDonald C, Nielsen JN, Hellsten Y, Hardie DG, Kemp BE, Kiens B & Richter EA (2003) Regulation of 5′AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am J Physiol Endocrinol Metab 284, E813E822.
  • 25
    Steinberg GR, Watt MJ, McGee SL, Chan S, Hargreaves M, Febbraio MA, Stapleton D & Kemp BE (2006) Reduced glycogen availability is associated with increased AMPKalpha2 activity, nuclear AMPKalpha2 protein abundance, and GLUT4 mRNA expression in contracting human skeletal muscle. Appl Physiol Nutr Metab 31, 302312.
  • 26
    McBride A, Ghilagaber S, Nikolaev A & Hardie DG (2009) The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor. Cell Metab 9, 2334.
  • 27
    Hudson ER, Pan DA, James J, Lucocq JM, Hawley SA, Green KA, Baba O, Terashima T & Hardie DG (2003) A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr Biol 13, 861866.
  • 28
    Warden SM, Richardson C, O'Donnell J Jr, Stapleton D, Kemp BE & Witters LA (2001) Post-translational modifications of the beta-1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization. Biochem J 354, 275283.
  • 29
    Scott JW, Van Denderen BJ, Jorgensen SB, Honeyman JE, Steinberg GR, Oakhill JS, Iseli TJ, Koay A, Gooley PR, Stapleton D et al. (2008) Thienopyridone drugs are selective activators of AMP-activated protein kinase beta1-containing complexes. Chem Biol 15, 12201230.
  • 30
    Polekhina G, Gupta A, Michell BJ, Van Denderen B, Murthy S, Feil SC, Jennings IG, Campbell DJ, Witters LA, Parker MW et al. (2003) AMPK beta subunit targets metabolic stress sensing to glycogen. Curr Biol 13, 867871.
  • 31
    Xiao B, Heath R, Saiu P, Leiper FC, Leone P, Jing C, Walker PA, Haire L, Eccleston JF, Davis CT et al. (2007) Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 449, 496500.
  • 32
    Iseli TJ, Walter M, Van Denderen BJ, Katsis F, Witters LA, Kemp BE, Michell BJ & Stapleton D (2005) AMP-activated protein kinase beta subunit tethers alpha and gamma subunits via its C-terminal sequence (186–270). J Biol Chem 280, 1339513400.
  • 33
    Iseli TJ, Oakhill JS, Bailey MF, Wee S, Walter M, Van Denderen BJ, Castelli LA, Katsis F, Witters LA, Stapleton D et al. (2008) AMP-activated protein kinase subunit interactions: beta1:gamma1 association requires beta1 Thr-263 and Tyr-267. J Biol Chem 283, 47994807.
  • 34
    Gissot L, Polge C, Bouly JP, Lemaitre T, Kreis M & Thomas M (2004) AKINbeta3, a plant specific SnRK1 protein, is lacking domains present in yeast and mammals non-catalytic beta-subunits. Plant Mol Biol 56, 747759.
  • 35
    Amodeo GA, Rudolph MJ & Tong L (2007) Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1. Nature 449, 492495.
  • 36
    Momcilovic M & Carlson M (2011) Alterations at dispersed sites cause phosphorylation and activation of SNF1 protein kinase during growth on high glucose. J Biol Chem 286, 2354423551.
  • 37
    Garcia-Haro L, Garcia-Gimeno MA, Neumann D, Beullens M, Bollen M & Sanz P (2010) The PP1-R6 protein phosphatase holoenzyme is involved in the glucose-induced dephosphorylation and inactivation of AMP-activated protein kinase, a key regulator of insulin secretion, in MIN6 beta cells. FASEB J 24, 50805091.
  • 38
    Mitchelhill KI, Michell BJ, House CM, Stapleton D, Dyck J, Gamble J, Ullrich C, Witters LA & Kemp BE (1997) Posttranslational modifications of the 5′-AMP-activated protein kinase beta1 subunit. J Biol Chem 272, 2447524479.
  • 39
    Woods A, Vertommen D, Neumann D, Turk R, Bayliss J, Schlattner U, Wallimann T, Carling D & Rider MH (2003) Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstream AMPK kinases and study of their roles by site-directed mutagenesis. J Biol Chem 278, 2843428442.
  • 40
    Tuerk RD, Auchli Y, Thali RF, Scholz R, Wallimann T, Brunisholz RA & Neumann D (2009) Tracking and quantification of 32P-labeled phosphopeptides in liquid chromatography matrix-assisted laser desorption/ionization mass spectrometry. Anal Biochem 390, 141148.
  • 41
    Resh MD (2006) Trafficking and signaling by fatty-acylated and prenylated proteins. Nat Chem Biol 2, 584590.
  • 42
    Martin DD, Beauchamp E & Berthiaume LG (2011) Post-translational myristoylation: fat matters in cellular life and death. Biochimie 93, 1831.
  • 43
    Oakhill JS, Steel R, Chen ZP, Scott JW, Ling N, Tam S & Kemp BE (2011) AMPK is a direct adenylate charge-regulated protein kinase. Science 332, 14331435.
  • 44
    Oakhill JS, Chen ZP, Scott JW, Steel R, Castelli LA, Ling N, Macaulay SL & Kemp BE (2010) beta-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). Proc Natl Acad Sci USA 107, 1923719241.
  • 45
    Komander D & Rape M (2012) The ubiquitin code. Annu Rev Biochem 81, 203229.
  • 46
    Qi J, Gong J, Zhao T, Zhao J, Lam P, Ye J, Li JZ, Wu J, Zhou HM & Li P (2008) Downregulation of AMP-activated protein kinase by Cidea-mediated ubiquitination and degradation in brown adipose tissue. EMBO J 27, 15371548.
  • 47
    Zungu M, Schisler JC, Essop MF, McCudden C, Patterson C & Willis MS (2011) Regulation of AMPK by the ubiquitin proteasome system. Am J Pathol 178, 411.
  • 48
    Moreno D, Towler MC, Hardie DG, Knecht E & Sanz P (2010) The laforin-malin complex, involved in Lafora disease, promotes the incorporation of K63-linked ubiquitin chains into AMP-activated protein kinase beta subunits. Mol Biol Cell 21, 25782588.
  • 49
    Roma-Mateo C, Sanz P & Gentry MS (2012) Deciphering the role of malin in the lafora progressive myoclonus epilepsy. IUBMB Life 64, 801808.
  • 50
    Gentry MS, Roma-Mateo C & Sanz P (2013) Laforin, a protein with many faces: glucan phosphatase, adapter protein, et alii. FEBS J 280, 525537.
  • 51
    Reyes-Turcu FE, Ventii KH & Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78, 363397.
  • 52
    Al-Hakim AK, Zagorska A, Chapman L, Deak M, Peggie M & Alessi DR (2008) Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains. Biochem J 411, 249260.
  • 53
    Gareau JR & Lima CD (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev 11, 861871.
  • 54
    Wilkinson KA & Henley JM (2010) Mechanisms, regulation and consequences of protein SUMOylation. Biochem J 428, 133145.
  • 55
    Rubio T, Vernia S & Sanz P (2013) Sumoylation of AMPKbeta2 subunit enhances AMP-activated protein kinase activity. Mol Biol Cell 24, 18011811.
  • 56
    Moreno D, Viana R & Sanz P (2009) Two-hybrid analysis identifies PSMD11, a non-ATPase subunit of the proteasome, as a novel interaction partner of AMP-activated protein kinase. Int J Biochem Cell Biol 41, 24312439.
  • 57
    Mukhopadhyay D & Dasso M (2007) Modification in reverse: the SUMO proteases. Trends Biochem Sci 32, 286295.
  • 58
    Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, Dickinson R, Adler A, Gagne G, Iyengar R et al. (2006) Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3, 403416.
  • 59
    Sanders MJ, Ali ZS, Hegarty BD, Heath R, Snowden MA & Carling D (2007) Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family. J Biol Chem 282, 3253932548.
  • 60
    Goransson O, McBride A, Hawley SA, Ross FA, Shpiro N, Foretz M, Viollet B, Hardie DG & Sakamoto K (2007) Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase. J Biol Chem 282, 3254932560.
  • 61
    Hawley SA, Fullerton MD, Ross FA, Schertzer JD, Chevtzoff C, Walker KJ, Peggie MW, Zibrova D, Green KA, Mustard KJ et al. (2012) The ancient drug salicylate directly activates AMP-activated protein kinase. Science 336, 918922.
  • 62
    Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S, Towler MC, Brown LJ, Ogunbayo OA, Evans AM et al. (2010) Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab 11, 554565.
  • 63
    Giordanetto F & Karis D (2012) Direct AMP-activated protein kinase activators: a review of evidence from the patent literature. Expert Opin Ther Pat 22, 14671477.