SEARCH

SEARCH BY CITATION

References

  • 1
    Stasyk T & Huber LA (2012) Mapping in vivo signal transduction defects by phosphoproteomics. Trends Mol Med 18, 4351.
  • 2
    Nilsson CL (2012) Advances in quantitative phosphoproteomics. Anal Chem 84, 735746.
  • 3
    Ren J, Gao X, Liu Z, Cao J, Ma Q & Xue Y (2011) Computational analysis of phosphoproteomics: progresses and perspectives. Curr Protein Pept Sci 12, 591601.
  • 4
    Macek B, Mann M & Olsen JV (2009) Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol 49, 199221.
  • 5
    Metodiev M & Alldridge L (2008) Phosphoproteomics: a possible route to novel biomarkers of breast cancer. Proteomics Clin Appl 2, 181194.
  • 6
    Yu LR, Issaq HJ & Veenstra TD (2007) Phosphoproteomics for the discovery of kinases as cancer biomarkers and drug targets. Proteomics Clin Appl 1, 10421057.
  • 7
    Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P & Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635648.
  • 8
    Koomen JM, Haura EB, Bepler G, Sutphen R, Remily-Wood ER, Benson K, Hussein M, Hazlehurst LA, Yeatman TJ, Hildreth LT, et al. (2008) Proteomic contributions to personalized cancer care. Mol Cell Proteomics 7, 17801794.
  • 9
    Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, Nardone J, Lee K, Reeves C, Li Y, et al. (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 11901203.
  • 10
    Lim YP (2005) Mining the tumor phosphoproteome for cancer markers. Clin Cancer Res 11, 31633169.
  • 11
    Chen X, Wu D, Zhao Y, Wong BH & Guo L (2011) Increasing phosphoproteome coverage and identification of phosphorylation motifs through combination of different HPLC fractionation methods. J Chromatogr B Analyt Technol Biomed Life Sci 879, 2534.
  • 12
    Bian Y, Ye M, Song C, Cheng K, Wang C, Wei X, Zhu J, Chen R, Wang F & Zou H (2012) Improve the coverage for the analysis of phosphoproteome of HeLa cells by a tandem digestion approach. J Proteome Res 11, 28282837.
  • 13
    Engholm-Keller K, Hansen TA, Palmisano G & Larsen MR (2011) Multidimensional strategy for sensitive phosphoproteomics incorporating protein prefractionation combined with SIMAC, HILIC, and TiO(2) chromatography applied to proximal EGF signaling. J Proteome Res 10, 53835397.
  • 14
    Han G, Ye M, Liu H, Song C, Sun D, Wu Y, Jiang X, Chen R, Wang C, Wang L, et al. (2010) Phosphoproteome analysis of human liver tissue by long-gradient nanoflow LC coupled with multiple stage MS analysis. Electrophoresis 31, 10801089.
  • 15
    Barabasi AL, Gulbahce N & Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12, 5668.
  • 16
    Erler JT & Linding R (2010) Network-based drugs and biomarkers. J Pathol 220, 290296.
  • 17
    Pawson T & Linding R (2008) Network medicine. FEBS Lett 582, 12661270.
  • 18
    Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villen J, Haas W, Sowa ME & Gygi SP (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 11741189.
  • 19
    Oppermann FS, Grundner-Culemann K, Kumar C, Gruss OJ, Jallepalli PV & Daub H (2012) Combination of chemical genetics and phosphoproteomics for kinase signaling analysis enables confident identification of cellular downstream targets. Mol Cell Proteomics 11, O111.012351.
  • 20
    Grosstessner-Hain K, Hegemann B, Novatchkova M, Rameseder J, Joughin BA, Hudecz O, Roitinger E, Pichler P, Kraut N & Yaffe MB et al. (2011) Quantitative phospho-proteomics to investigate the polo-like kinase 1-dependent phospho-proteome. Mol Cell Proteomics 10, M111.008540.
  • 21
    Santamaria A, Wang B, Elowe S, Malik R, Zhang F, Bauer M, Schmidt A, Sillje HH, Koerner R & Nigg EA (2011) The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics 10, M110.004457.
  • 22
    Holt LJ, Tuch BB, Villen J, Johnson AD, Gygi SP & Morgan DO (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325, 16821686.
  • 23
    Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, et al. (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 11601166.
  • 24
    Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, Chen RO, Brownstein BH, Cobb JP, Tschoeke SK, et al. (2005) A network-based analysis of systemic inflammation in humans. Nature 437, 10321037.
  • 25
    Mi H, Muruganujan A & Thomas PD (2013) PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res 41, D377D386.
  • 26
    Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, et al. (2009) STRING 8 – a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37, D412D416.
  • 27
    Kanehisa M, Goto S, Kawashima S, Okuno Y & Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32, D277D280.
  • 28
    Weigand S, Herting F, Maisel D, Nopora A, Voss E, Schaab C, Klammer M & Tebbe A (2012) Global quantitative phosphoproteome analysis of human tumor xenografts treated with a CD44 antagonist. Cancer Res 72, 43294339.
  • 29
    Klammer M, Godl K, Tebbe A & Schaab C (2010) Identifying differentially regulated subnetworks from phosphoproteomic data. BMC Bioinformatics 11, 351.
  • 30
    Tan CS & Linding R (2009) Experimental and computational tools useful for (re)construction of dynamic kinase–substrate networks. Proteomics 9, 52335242.
  • 31
    Puente LG, Lee RE & Megeney LA (2009) Reconstructing regulatory kinase pathways from phosphopeptide data: a bioinformatics approach. Methods Mol Biol 527, 311319.
  • 32
    Obenauer JC, Cantley LC & Yaffe MB (2003) Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31, 36353641.
  • 33
    Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S & Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4, 16331649.
  • 34
    Xue Y, Ren J, Gao X, Jin C, Wen L & Yao X (2008) GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics 7, 15981608.
  • 35
    Linding R, Jensen LJ, Ostheimer GJ, Van Vugt MA, Jorgensen C, Miron IM, Diella F, Colwill K, Taylor L, Elder K, et al. (2007) Systematic discovery of in vivo phosphorylation networks. Cell 129, 14151426.
  • 36
    Linding R, Jensen LJ, Pasculescu A, Olhovsky M, Colwill K, Bork P, Yaffe MB & Pawson T (2008) NetworKIN: a resource for exploring cellular phosphorylation networks. Nucleic Acids Res 36, D695D699.
  • 37
    Liu Z, Ren J, Cao J, He J, Yao X, Jin C & Xue Y (2013) Systematic analysis of the Plk-mediated phosphoregulation in eukaryotes. Brief Bioinform 14, 344360.
  • 38
    Song C, Ye M, Liu Z, Cheng H, Jiang X, Han G, Songyang Z, Tan Y, Wang H, Ren J, et al. (2012) Systematic analysis of protein phosphorylation networks from phosphoproteomic data. Mol Cell Proteomics 11, 10701083.
  • 39
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B & Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 24982504.
  • 40
    Erler JT & Linding R (2012) Network medicine strikes a blow against breast cancer. Cell 149, 731733.
  • 41
    Bakal C, Linding R, Llense F, Heffern E, Martin-Blanco E, Pawson T & Perrimon N (2008) Phosphorylation networks regulating JNK activity in diverse genetic backgrounds. Science 322, 453456.
  • 42
    Bennetzen MV, Marino G, Pultz D, Morselli E, Faergeman NJ, Kroemer G & Andersen JS (2012) Phosphoproteomic analysis of cells treated with longevity-related autophagy inducers. Cell Cycle 11, 18271840.
  • 43
    Van Hoof D, Munoz J, Braam SR, Pinkse MW, Linding R, Heck AJ, Mummery CL & Krijgsveld J (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214226.
  • 44
    Zanivan S, Meves A, Behrendt K, Schoof EM, Neilson LJ, Cox J, Tang HR, Kalna G, Van Ree JH, Van Deursen JM, et al. (2013) In vivo SILAC-based proteomics reveals phosphoproteome changes during mouse skin carcinogenesis. Cell Rep 3, 552566.
  • 45
    Xue Y, Gao X, Cao J, Liu Z, Jin C, Wen L, Yao X & Ren J (2010) A summary of computational resources for protein phosphorylation. Curr Protein Pept Sci 11, 485496.
  • 46
    Bensimon A, Schmidt A, Ziv Y, Elkon R, Wang SY, Chen DJ, Aebersold R & Shiloh Y (2010) ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage. Sci Signal 3, rs3.
  • 47
    Phanstiel DH, Brumbaugh J, Wenger CD, Tian S, Probasco MD, Bailey DJ, Swaney DL, Tervo MA, Bolin JM, Ruotti V, et al. (2011) Proteomic and phosphoproteomic comparison of human ES and iPS cells. Nat Methods 8, 821827.
  • 48
    Kettenbach AN, Schweppe DK, Faherty BK, Pechenick D, Pletnev AA & Gerber SA (2011) Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells. Sci Signal 4, rs5.
  • 49
    Schwartz D & Gygi SP (2005) An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets. Nat Biotechnol 23, 13911398.
  • 50
    Casado P, Rodriguez-Prados JC, Cosulich SC, Guichard S, Vanhaesebroeck B, Joel S & Cutillas PR (2013) Kinase–substrate enrichment analysis provides insights into the heterogeneity of signaling pathway activation in leukemia cells. Sci Signal 6, rs6.
  • 51
    Iliuk AB & Tao WA (2013) Is phosphoproteomics ready for clinical research? Clin Chim Acta 420, 2327.
  • 52
    Solit DB & Mellinghoff IK (2010) Tracing cancer networks with phosphoproteomics. Nat Biotechnol 28, 10281029.
  • 53
    Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villen J, Kubica N, Hoffman GR, Cantley LC, Gygi SP, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 13221326.
  • 54
    Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, Peterson TR, Choi Y, Gray NS, Yaffe MB, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 13171322.
  • 55
    Klammer M, Kaminski M, Zedler A, Oppermann F, Blencke S, Marx S, Muller S, Tebbe A, Godl K & Schaab C (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651668.
  • 56
    Hopkins AL & Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1, 727730.
  • 57
    Russ AP & Lampel S (2005) The druggable genome: an update. Drug Discov Today 10, 16071610.
  • 58
    Lapenna S & Giordano A (2009) Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov 8, 547566.
  • 59
    Lee MJ, Ye AS, Gardino AK, Heijink AM, Sorger PK, MacBeath G & Yaffe MB (2012) Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 149, 780794.
  • 60
    Tentner AR, Lee MJ, Ostheimer GJ, Samson LD, Lauffenburger DA & Yaffe MB (2012) Combined experimental and computational analysis of DNA damage signaling reveals context-dependent roles for Erk in apoptosis and G1/S arrest after genotoxic stress. Mol Syst Biol 8, 568.
  • 61
    Newman RH, Hu J, Rho HS, Xie Z, Woodard C, Neiswinger J, Cooper C, Shirley M, Clark HM, Hu S, et al. (2013) Construction of human activity-based phosphorylation networks. Mol Syst Biol 9, 655.