• 1
    Manning G, Whyte DB, Martinez R, Hunter T & Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298, 19121934.
  • 2
    Gautel M, Castiglione Morelli MA, Pfuhl M, Motta A & Pastore A (1995) A calmodulin-binding sequence in the C-terminus of human cardiac titin kinase. Eur J Biochem 230, 752759.
  • 3
    Niiro N & Ikebe M (2001) Zipper-interacting protein kinase induces Ca(2+)-free smooth muscle contraction via myosin light chain phosphorylation. J Biol Chem 276, 2956729574.
  • 4
    Shoval Y, Berissi H, Kimchi A & Pietrokovski S (2011) New modularity of DAP-kinases: alternative splicing of the DRP-1 gene produces a ZIPk-like isoform. PLoS ONE 6, e17344.
  • 5
    Chan JY, Takeda M, Briggs LE, Graham ML, Lu JT, Horikoshi N, Weinberg EO, Aoki H, Sato N, Chien KR, et al. (2008) Identification of cardiac-specific myosin light chain kinase. Circ Res 102, 571580.
  • 6
    Dalby KN, Morrice N, Caudwell FB, Avruch J & Cohen P (1998) Identification of regulatory phosphorylation sites in mitogen-activated protein kinase (MAPK)-activated protein kinase-1a/p90rsk that are inducible by MAPK. J Biol Chem 273, 14961505.
  • 7
    McCoy CE, Campbell DG, Deak M, Bloomberg GB & Arthur JS (2005) MSK1 activity is controlled by multiple phosphorylation sites. Biochem J 387, 507517.
  • 8
    De Diego I, Kuper J, Bakalova N, Kursula P & Wilmanns M (2010) Molecular basis of the death-associated protein kinase–calcium/calmodulin regulator complex. Sci Signal 3, ra6.
  • 9
    Rellos P, Pike AC, Niesen FH, Salah E, Lee WH, Von Delft F & Knapp S (2010) Structure of the CaMKIIdelta/calmodulin complex reveals the molecular mechanism of CaMKII kinase activation. PLoS Biol 8, e1000426.
  • 10
    Gautel M (2011) Cytoskeletal protein kinases: titin and its relations in mechanosensing. Pflugers Arch 462, 119134.
  • 11
    Eswaran J & Knapp S (2010) Insights into protein kinase regulation and inhibition by large scale structural comparison. Biochim Biophys Acta 1804, 429432.
  • 12
    Pellicena P & Kuriyan J (2006) Protein–protein interactions in the allosteric regulation of protein kinases. Curr Opin Struct Biol 16, 702709.
  • 13
    Hoeflich KP & Ikura M (2002) Calmodulin in action: diversity in target recognition and activation mechanisms. Cell 108, 739742.
  • 14
    Yamniuk AP & Vogel HJ (2004) Calmodulin's flexibility allows for promiscuity in its interactions with target proteins and peptides. Mol Biotechnol 27, 3357.
  • 15
    Wayman GA, Lee YS, Tokumitsu H, Silva AJ & Soderling TR (2008) Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron 59, 914931.
  • 16
    Hook SS & Means AR (2001) Ca(2+)/CaM-dependent kinases: from activation to function. Annu Rev Pharmacol Toxicol 41, 471505.
  • 17
    Swulius MT & Waxham MN (2008) Ca(2+)/calmodulin-dependent protein kinases. Cell Mol Life Sci 65, 26372657.
  • 18
    Tereshko V, Teplova M, Brunzelle J, Watterson DM & Egli M (2001) Crystal structures of the catalytic domain of human protein kinase associated with apoptosis and tumor suppression. Nat Struct Biol 8, 899907.
  • 19
    Velentza AV, Schumacher AM, Weiss C, Egli M & Watterson DM (2001) A protein kinase associated with apoptosis and tumor suppression: structure, activity, and discovery of peptide substrates. J Biol Chem 276, 3895638965.
  • 20
    Shani G, Marash L, Gozuacik D, Bialik S, Teitelbaum L, Shohat G & Kimchi A (2004) Death-associated protein kinase phosphorylates ZIP kinase, forming a unique kinase hierarchy to activate its cell death functions. Mol Cell Biol 24, 86118626.
  • 21
    Bialik S & Kimchi A (2006) The death-associated protein kinases: structure, function, and beyond. Annu Rev Biochem 75, 189210.
  • 22
    Shohat G, Spivak-Kroizman T, Cohen O, Bialik S, Shani G, Berrisi H, Eisenstein M & Kimchi A (2001) The pro-apoptotic function of death-associated protein kinase is controlled by a unique inhibitory autophosphorylation-based mechanism. J Biol Chem 276, 4746047467.
  • 23
    Shani G, Henis-Korenblit S, Jona G, Gileadi O, Eisenstein M, Ziv T, Admon A & Kimchi A (2001) Autophosphorylation restrains the apoptotic activity of DRP-1 kinase by controlling dimerization and calmodulin binding. EMBO J 20, 10991113.
  • 24
    Bialik S & Kimchi A (2012) Biochemical and functional characterization of the ROC domain of DAPK establishes a new paradigm of GTP regulation in ROCO proteins. Biochem Soc Trans 40, 10521057.
  • 25
    Bialik S, Bresnick AR & Kimchi A (2004) DAP-kinase-mediated morphological changes are localization dependent and involve myosin-II phosphorylation. Cell Death Differ 11, 631644.
  • 26
    Carlessi R, Levin-Salomon V, Ciprut S, Bialik S, Berissi H, Albeck S, Peleg Y & Kimchi A (2011) GTP binding to the ROC domain of DAP-kinase regulates its function through intramolecular signalling. EMBO Rep 12, 917923.
  • 27
    Raveh T, Berissi H, Eisenstein M, Spivak T & Kimchi A (2000) A functional genetic screen identifies regions at the C-terminal tail and death-domain of death-associated protein kinase that are critical for its proapoptotic activity. Proc Natl Acad Sci USA 97, 15721577.
  • 28
    Llambi F, Lourenco FC, Gozuacik D, Guix C, Pays L, Del Rio G, Kimchi A & Mehlen P (2005) The dependence receptor UNC5H2 mediates apoptosis through DAP-kinase. EMBO J 24, 11921201.
  • 29
    Chen CH, Wang WJ, Kuo JC, Tsai HC, Lin JR, Chang ZF & Chen RH (2005) Bidirectional signals transduced by DAPK–ERK interaction promote the apoptotic effect of DAPK. EMBO J 24, 294304.
  • 30
    Wu PR, Tsai PI, Chen GC, Chou HJ, Huang YP, Chen YH, Lin MY, Kimchi A, Chien CT & Chen RH (2011) DAPK activates MARK1/2 to regulate microtubule assembly, neuronal differentiation, and tau toxicity. Cell Death Differ 18, 15071520.
  • 31
    Cohen O, Feinstein E & Kimchi A (1997) DAP-kinase is a Ca2+/calmodulin-dependent, cytoskeletal-associated protein kinase, with cell death-inducing functions that depend on its catalytic activity. EMBO J 16, 9981008.
  • 32
    Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein M, Sabanay H, Pinkas-Kramarski R & Kimchi A (2009) DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep 10, 285292.
  • 33
    Lin Y, Hupp TR & Stevens C (2010) Death-associated protein kinase (DAPK) and signal transduction: additional roles beyond cell death. FEBS J 277, 4857.
  • 34
    Fraser JA & Hupp TR (2007) Chemical genetics approach to identify peptide ligands that selectively stimulate DAPK-1 kinase activity. Biochemistry 46, 26552673.
  • 35
    Inbal B, Shani G, Cohen O, Kissil JL & Kimchi A (2000) Death-associated protein kinase-related protein 1, a novel serine/threonine kinase involved in apoptosis. Mol Cell Biol 20, 10441054.
  • 36
    Lupas AN & Gruber M (2005) The structure of alpha-helical coiled coils. Adv Protein Chem 70, 3778.
  • 37
    Graves PR, Winkfield KM & Haystead TA (2005) Regulation of zipper-interacting protein kinase activity in vitro and in vivo by multisite phosphorylation. J Biol Chem 280, 93639374.
  • 38
    Mukhopadhyay R, Ray PS, Arif A, Brady AK, Kinter M & Fox PL (2008) DAPK–ZIPK–L13a axis constitutes a negative-feedback module regulating inflammatory gene expression. Mol Cell 32, 371382.
  • 39
    Pike AC, Rellos P, Niesen FH, Turnbull A, Oliver AW, Parker SA, Turk BE, Pearl LH & Knapp S (2008) Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sites. EMBO J 27, 704714.
  • 40
    Patel AK, Yadav RP, Majava V, Kursula I & Kursula P (2011) Structure of the dimeric autoinhibited conformation of DAPK2, a pro-apoptotic protein kinase. J Mol Biol 409, 369383.
  • 41
    Sanjo H, Kawai T & Akira S (1998) DRAKs, novel serine/threonine kinases related to death-associated protein kinase that trigger apoptosis. J Biol Chem 273, 2906629071.
  • 42
    McGargill MA, Wen BG, Walsh CM & Hedrick SM (2004) A deficiency in Drak2 results in a T cell hypersensitivity and an unexpected resistance to autoimmunity. Immunity 21, 781791.
  • 43
    Newton RH, Leverrier S, Srikanth S, Gwack Y, Cahalan MD & Walsh CM (2011) Protein kinase D orchestrates the activation of DRAK2 in response to TCR-induced Ca2+ influx and mitochondrial reactive oxygen generation. J Immunol 186, 940950.
  • 44
    Pearson RB, Woodgett JR, Cohen P & Kemp BE (1985) Substrate specificity of a multifunctional calmodulin-dependent protein kinase. J Biol Chem 260, 1447114476.
  • 45
    Hong F, Haldeman BD, Jackson D, Carter M, Baker JE & Cremo CR (2011) Biochemistry of smooth muscle myosin light chain kinase. Arch Biochem Biophys 510, 135146.
  • 46
    Stull JT, Kamm KE & Vandenboom R (2011) Myosin light chain kinase and the role of myosin light chain phosphorylation in skeletal muscle. Arch Biochem Biophys 510, 120128.
  • 47
    Ledvora RF, Barany K, VanderMeulen DL, Barron JT & Barany M (1983) Stretch-induced phosphorylation of the 20,000-dalton light chain of myosin in arterial smooth muscle. J Biol Chem 258, 1408014083.
  • 48
    Scruggs SB & Solaro RJ (2011) The significance of regulatory light chain phosphorylation in cardiac physiology. Arch Biochem Biophys 510, 129134.
  • 49
    Shirinsky VP, Vorotnikov AV, Birukov KG, Nanaev AK, Collinge M, Lukas TJ, Sellers JR & Watterson DM (1993) A kinase-related protein stabilizes unphosphorylated smooth muscle myosin minifilaments in the presence of ATP. J Biol Chem 268, 1657816583.
  • 50
    Silver DL, Vorotnikov AV, Watterson DM, Shirinsky VP & Sellers JR (1997) Sites of interaction between kinase-related protein and smooth muscle myosin. J Biol Chem 272, 2535325359.
  • 51
    Ding P, Huang J, Battiprolu PK, Hill JA, Kamm KE & Stull JT (2010) Cardiac myosin light chain kinase is necessary for myosin regulatory light chain phosphorylation and cardiac performance in vivo. J Biol Chem 285, 4081940829.
  • 52
    Bang ML, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M, Witt CC, Labeit D, Gregorio CC, Granzier H, et al. (2001) The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res 89, 10651072.
  • 53
    Kruger M & Linke WA (2011) The giant protein titin: a regulatory node that integrates myocyte signaling pathways. J Biol Chem 286, 99059912.
  • 54
    Zou P, Pinotsis N, Lange S, Song YH, Popov A, Mavridis I, Mayans OM, Gautel M & Wilmanns M (2006) Palindromic assembly of the giant muscle protein titin in the sarcomeric Z-disk. Nature 439, 229233.
  • 55
    Mayans O, Van der Ven PF, Wilm M, Mues A, Young P, Furst DO, Wilmanns M & Gautel M (1998) Structural basis for activation of the titin kinase domain during myofibrillogenesis. Nature 395, 863869.
  • 56
    Lange S, Agarkova I, Perriard JC & Ehler E (2005) The sarcomeric M-band during development and in disease. J Muscle Res Cell Motil 26, 375379.
  • 57
    Puchner EM, Alexandrovich A, Kho AL, Hensen U, Schafer LV, Brandmeier B, Grater F, Grubmuller H, Gaub HE & Gautel M (2008) Mechanoenzymatics of titin kinase. Proc Natl Acad Sci USA 105, 1338513390.
  • 58
    Barany K, Rokolya A & Barany M (1990) Stretch activates myosin light chain kinase in arterial smooth muscle. Biochem Biophys Res Commun 173, 164171.
  • 59
    Mandela P, Yankova M, Conti LH, Ma XM, Grady J, Eipper BA & Mains RE (2012) Kalrn plays key roles within and outside of the nervous system. BMC Neurosci 13, 136.
  • 60
    Bateman J & Van Vactor D (2001) The Trio family of guanine-nucleotide-exchange factors: regulators of axon guidance. J Cell Sci 114, 19731980.
  • 61
    Young P, Ehler E & Gautel M (2001) Obscurin, a giant sarcomeric Rho guanine nucleotide exchange factor protein involved in sarcomere assembly. J Cell Biol 154, 123136.
  • 62
    Hsieh CM, Fukumoto S, Layne MD, Maemura K, Charles H, Patel A, Perrella MA & Lee ME (2000) Striated muscle preferentially expressed genes alpha and beta are two serine/threonine protein kinases derived from the same gene as the aortic preferentially expressed gene-1. J Biol Chem 275, 3696636973.
  • 63
    Bowman AL, Kontrogianni-Konstantopoulos A, Hirsch SS, Geisler SB, Gonzalez-Serratos H, Russell MW & Bloch RJ (2007) Different obscurin isoforms localize to distinct sites at sarcomeres. FEBS Lett 581, 15491554.
  • 64
    Kontrogianni-Konstantopoulos A, Catino DH, Strong JC, Sutter S, Borisov AB, Pumplin DW, Russell MW & Bloch RJ (2006) Obscurin modulates the assembly and organization of sarcomeres and the sarcoplasmic reticulum. FASEB J 20, 21022111.
  • 65
    Bagnato P, Barone V, Giacomello E, Rossi D & Sorrentino V (2003) Binding of an ankyrin-1 isoform to obscurin suggests a molecular link between the sarcoplasmic reticulum and myofibrils in striated muscles. J Cell Biol 160, 245253.
  • 66
    Armani A, Galli S, Giacomello E, Bagnato P, Barone V, Rossi D & Sorrentino V (2006) Molecular interactions with obscurin are involved in the localization of muscle-specific small ankyrin1 isoforms to subcompartments of the sarcoplasmic reticulum. Exp Cell Res 312, 35463558.
  • 67
    Bowman AL, Catino DH, Strong JC, Randall WR, Kontrogianni-Konstantopoulos A & Bloch RJ (2008) The rho-guanine nucleotide exchange factor domain of obscurin regulates assembly of titin at the Z-disk through interactions with Ran binding protein 9. Mol Biol Cell 19, 37823792.
  • 68
    Ford-Speelman DL, Roche JA, Bowman AL & Bloch RJ (2009) The rho-guanine nucleotide exchange factor domain of obscurin activates rhoA signaling in skeletal muscle. Mol Biol Cell 20, 39053917.
  • 69
    Hanks SK & Hunter T (1995) Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9, 576596.
  • 70
    Taylor SS, Keshwani MM, Steichen JM & Kornev AP (2012) Evolution of the eukaryotic protein kinases as dynamic molecular switches. Phil Trans R Soc Lond B Biol Sci 367, 25172528.
  • 71
    Oruganty K & Kannan N (2012) Design principles underpinning the regulatory diversity of protein kinases. Phil Trans R Soc Lond B Biol Sci 367, 25292539.
  • 72
    Taylor SS & Kornev AP (2011) Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem Sci 36, 6577.
  • 73
    Huse M & Kuriyan J (2002) The conformational plasticity of protein kinases. Cell 109, 275282.
  • 74
    Kornev AP, Taylor SS & Ten Eyck LF (2008) A helix scaffold for the assembly of active protein kinases. Proc Natl Acad Sci USA 105, 1437714382.
  • 75
    Meador WE, Means AR & Quiocho FA (1992) Target enzyme recognition by calmodulin: 2.4 Å structure of a calmodulin–peptide complex. Science 257, 12511255.
  • 76
    Ikura M, Clore GM, Gronenborn AM, Zhu G, Klee CB & Bax A (1992) Solution structure of a calmodulin–target peptide complex by multidimensional NMR. Science 256, 632638.
  • 77
    Kemp BE, Parker MW, Hu S, Tiganis T & House C (1994) Substrate and pseudosubstrate interactions with protein kinases: determinants of specificity. Trends Biochem Sci 19, 440444.
  • 78
    Chin D & Means AR (2002) Mechanisms for regulation of calmodulin kinase IIalpha by Ca(2+)/calmodulin and autophosphorylation of threonine 286. Biochemistry 41, 1400114009.
  • 79
    Kobe B, Heierhorst J, Feil SC, Parker MW, Benian GM, Weiss KR & Kemp BE (1996) Giant protein kinases: domain interactions and structural basis of autoregulation. EMBO J 15, 68106821.
  • 80
    Von Castelmur E, Strumpfer J, Franke B, Bogomolovas J, Barbieri S, Qadota H, Konarev PV, Svergun DI, Labeit S, Benian GM, et al. (2012) Identification of an N-terminal inhibitory extension as the primary mechanosensory regulator of twitchin kinase. Proc Natl Acad Sci USA 109, 1360813613.
  • 81
    Wilmanns M, Gautel M & Mayans O (2000) Activation of calcium/calmodulin regulated kinases. Cell Mol Biol (Noisy-le-grand) 46, 883894.
  • 82
    Stahl SW, Puchner EM, Alexandrovich A, Gautel M & Gaub HE (2011) A conditional gating mechanism assures the integrity of the molecular force-sensor titin kinase. Biophys J 101, 19781986.
  • 83
    Krissinel E & Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D 60, 22562268.
  • 84
    Thompson JD, Higgins DG & Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 46734680.
  • 85
    Saitou N & Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406425.
  • 86
    Zheng J, Trafny EA, Knighton DR, Xuong NH, Taylor SS, Ten Eyck LF & Sowadski JM (1993) 2.2 A refined crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MnATP and a peptide inhibitor. Acta Crystallogr D 49, 362365.