• 1
    Griffith OW & Stuehr DJ (1995) Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol 57, 707736.
  • 2
    Daff S (2010) NO synthase: structures and mechanisms. Nitric Oxide 23, 111.
  • 3
    Alderton WK, Cooper CE & Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357, 593615.
  • 4
    Gorren ACF, List BM, Schrammel A, Pitters E, Hemmens B, Werner ER, Schmidt K & Mayer B (1996) Tetrahydrobiopterin-free neuronal nitric oxide synthase: evidence for two identical highly anticooperative pteridine binding sites. Biochemistry 35, 1673516745.
  • 5
    Wei CC, Crane BR & Stuehr DJ (2003) Tetrahydrobiopterin radical enzymology. Chem Rev 103, 23652383.
  • 6
    Masters BS, McMillan K, Sheta EA, Nishimura JS, Roman LJ & Martasek P (1996) Neuronal nitric oxide synthase, a modular enzyme formed by convergent evolution: structure studies of a cysteine thiolate-liganded heme protein that hydroxylates L-arginine to produce NO• as a cellular signal. FASEB J 10, 552558.
  • 7
    Stuehr DJ (1997) Structure–function aspects in the nitric oxide synthases. Annu Rev Pharmacol Toxicol 37, 339359.
  • 8
    Crane BR, Arvai AS, Ghosh DK, Wu C, Getzoff ED, Stuehr DJ & Tainer JA (1998) Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science 279, 21212126.
  • 9
    Fischmann TO, Hruza A, Niu XD, Fossetta JD, Lunn CA, Dolphin E, Prongay AJ, Reichert P, Lundell DJ, Narula SK et al. (1999) Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation. Nat Struct Biol 6, 233242.
  • 10
    Gachhui R, Presta A, Bentley DF, Abu-Soud HM, McArthur R, Brudvig G, Ghosh DK & Stuehr DJ (1996) Characterization of the reductase domain of rat neuronal nitric oxide synthase generated in the methylotrophic yeast Pichia pastoris. Calmodulin response is complete within the reductase domain itself. J Biol Chem 271, 2059420602.
  • 11
    Garcin ED, Bruns CM, Lloyd SJ, Hosfield DJ, Tiso M, Gachhui R, Stuehr DJ, Tainer JA & Getzoff ED (2004) Structural basis for isozyme-specific regulation of electron transfer in nitric-oxide synthase. J Biol Chem 279, 3791837927.
  • 12
    Sheta EA, McMillan K & Masters BS (1994) Evidence for a bidomain structure of constitutive cerebellar nitric oxide synthase. J Biol Chem 269, 1514715153.
  • 13
    Ledbetter AP, McMillan K, Roman LJ, Masters BS, Dawson JH & Sono M (1999) Low-temperature stabilization and spectroscopic characterization of the dioxygen complex of the ferrous neuronal nitric oxide synthase oxygenase domain. Biochemistry 38, 80148021.
  • 14
    Wang ZQ, Wei CC & Stuehr DJ (2002) A conserved tryptophan 457 modulates the kinetics and extent of N-hydroxy-L-arginine oxidation by inducible nitric-oxide synthase. J Biol Chem 277, 1283012837.
  • 15
    Wei CC, Wang ZQ, Wang Q, Meade AL, Hemann C, Hille R & Stuehr DJ (2001) Rapid kinetic studies link tetrahydrobiopterin radical formation to heme-dioxy reduction and arginine hydroxylation in inducible nitric-oxide synthase. J Biol Chem 276, 315319.
  • 16
    Abu-Soud HM, Wang J, Rousseau DL, Fukuto JM, Ignarro LJ & Stuehr DJ (1995) Neuronal nitric oxide synthase self-inactivates by forming a ferrous-nitrosyl complex during aerobic catalysis. J Biol Chem 270, 2299723006.
  • 17
    Salerno JC (2008) Neuronal nitric oxide synthase: prototype for pulsed enzymology. FEBS Lett 582, 13951399.
  • 18
    Santolini J, Meade AL & Stuehr DJ (2001) Differences in three kinetic parameters underpin the unique catalytic profiles of nitric-oxide synthases I, II, and III. J Biol Chem 276, 4888748898.
  • 19
    Stuehr DJ, Santolini J, Wang ZQ, Wei CC & Adak S (2004) Update on mechanism and catalytic regulation in the NO synthases. J Biol Chem 279, 3616736170.
  • 20
    Haque MM, Panda K, Tejero J, Aulak KS, Fadlalla MA, Mustovich AT & Stuehr DJ (2007) A connecting hinge represses the activity of endothelial nitric oxide synthase. Proc Natl Acad Sci USA 104, 92549259.
  • 21
    Santolini J, Adak S, Curran CM & Stuehr DJ (2001) A kinetic simulation model that describes catalysis and regulation in nitric-oxide synthase. J Biol Chem 276, 12331243.
  • 22
    Adak S, Bilwes AM, Panda K, Hosfield D, Aulak KS, McDonald JF, Tainer JA, Getzoff ED, Crane BR & Stuehr DJ (2002) Cloning, expression, and characterization of a nitric oxide synthase protein from Deinococcus radiodurans. Proc Natl Acad Sci USA 99, 107112.
  • 23
    Ray SS, Tejero J, Wang ZQ, Dutta T, Bhattacharjee A, Regulski M, Tully T, Ghosh S & Stuehr DJ (2007) Oxygenase domain of Drosophila melanogaster nitric oxide synthase: unique kinetic parameters enable a more efficient NO release. Biochemistry 46, 1185711864.
  • 24
    Tejero J, Santolini J & Stuehr DJ (2009) Fast ferrous heme-NO oxidation in nitric oxide synthases. FEBS J 276, 45054514.
  • 25
    Wang ZQ, Wei CC, Sharma M, Pant K, Crane BR & Stuehr DJ (2004) A conserved Val to Ile switch near the heme pocket of animal and bacterial nitric-oxide synthases helps determine their distinct catalytic profiles. J Biol Chem 279, 1901819025.
  • 26
    Adak S, Aulak KS & Stuehr DJ (2001) Chimeras of nitric-oxide synthase types I and III establish fundamental correlates between heme reduction, heme-NO complex formation, and catalytic activity. J Biol Chem 276, 2324623252.
  • 27
    Li W, Chen L, Fan W & Feng C (2012) Comparing the temperature dependence of FMN to heme electron transfer in full length and truncated inducible nitric oxide synthase proteins. FEBS Lett 586, 159162.
  • 28
    Farver O & Pecht I (1989) Long-range intramolecular electron transfer in azurins. Proc Natl Acad Sci USA 86, 69686972.
  • 29
    Farver O, Einarsdottir O & Pecht I (2000) Electron transfer rates and equilibrium within cytochrome c oxidase. Eur J Biochem 267, 950954.
  • 30
    Farver O, Kroneck PM, Zumft WG & Pecht I (2002) Intramolecular electron transfer in cytochrome cd(1) nitrite reductase from Pseudomonas stutzeri; kinetics and thermodynamics. Biophys Chem 98, 2734.
  • 31
    Farver O, Brunori M, Cutruzzola F, Rinaldo S, Wherland S & Pecht I (2009) Intramolecular electron transfer in Pseudomonas aeruginosa cd(1) nitrite reductase: thermodynamics and kinetics. Biophys J 96, 28492856.
  • 32
    Chien JC, Gibson HL & Dickinson LC (1978) Ferricytochrome c oxidation of cobaltocytochrome c. Comparison of experiments with electron-transfer theories. Biochemistry 17, 25792584.
  • 33
    Ivkovic-Jensen MM & Kostic NM (1996) Effects of temperature on the kinetics of the gated electron-transfer reaction between zinc cytochrome c and plastocyanin. Analysis of configurational fluctuation of the diprotein complex. Biochemistry 35, 1509515106.
  • 34
    King GC, Binstead RA & Wright PE (1985) NMR and kinetic characterization of the interaction between French bean plastocyanin and horse cytochrome c. Biochim Biophys Acta 806, 262271.
  • 35
    Marcus RA & Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811, 265322.
  • 36
    Davidson VL (2008) Protein control of true, gated, and coupled electron transfer reactions. Acc Chem Res 41, 730738.
  • 37
    Gray HB & Winkler JR (2010) Electron flow through metalloproteins. Biochim Biophys Acta 1797, 15631572.
  • 38
    Ilagan RP, Tiso M, Konas DW, Hemann C, Durra D, Hille R & Stuehr DJ (2008) Differences in a conformational equilibrium distinguish catalysis by the endothelial and neuronal nitric-oxide synthase flavoproteins. J Biol Chem 283, 1960319615.
  • 39
    Stuehr DJ, Tejero J & Haque MM (2009) Structural and mechanistic aspects of flavoproteins: electron transfer through the nitric oxide synthase flavoprotein domain. FEBS J 276, 39593974.
  • 40
    Tejero J, Hannibal L, Mustovich A & Stuehr DJ (2010) Surface charges and regulation of FMN to heme electron transfer in nitric-oxide synthase. J Biol Chem 285, 2723227240.
  • 41
    Xia C, Misra I, Iyanagi T & Kim JJ (2009) Regulation of interdomain interactions by calmodulin in inducible nitric-oxide synthase. J Biol Chem 284, 3070830717.
  • 42
    Kobayashi K, Tagawa S, Daff S, Sagami I & Shimizu T (2001) Rapid calmodulin-dependent interdomain electron transfer in neuronal nitric-oxide synthase measured by pulse radiolysis. J Biol Chem 276, 3986439871.
  • 43
    Gao YT, Smith SM, Weinberg JB, Montgomery HJ, Newman E, Guillemette JG, Ghosh DK, Roman LJ, Martasek P & Salerno JC (2004) Thermodynamics of oxidation-reduction reactions in mammalian nitric-oxide synthase isoforms. J Biol Chem 279, 1875918766.
  • 44
    Noble MA, Munro AW, Rivers SL, Robledo L, Daff SN, Yellowlees LJ, Shimizu T, Sagami I, Guillemette JG & Chapman SK (1999) Potentiometric analysis of the flavin cofactors of neuronal nitric oxide synthase. Biochemistry 38, 1641316418.
  • 45
    Ost TW & Daff S (2005) Thermodynamic and kinetic analysis of the nitrosyl, carbonyl, and dioxy heme complexes of neuronal nitric-oxide synthase. The roles of substrate and tetrahydrobiopterin in oxygen activation. J Biol Chem 280, 965973.
  • 46
    Presta A, Weber-Main AM, Stankovich MT & Stuehr D (1998) Comparative effects of substrates and pterin cofactor on the heme midpoint potential in inducible and neuronal nitric oxide synthases. J Am Chem Soc 120, 94609465.
  • 47
    Ilagan RP, Tejero J, Aulak KS, Ray SS, Hemann C, Wang ZQ, Gangoda M, Zweier JL & Stuehr DJ (2009) Regulation of FMN subdomain interactions and function in neuronal nitric oxide synthase. Biochemistry 48, 38643876.
  • 48
    Salerno JC, Ray K, Poulos T, Li H & Ghosh DK (2013) Calmodulin activates neuronal nitric oxide synthase by enabling transitions between conformational states. FEBS Lett 587, 4447.
  • 49
    Harris TK, Davidson VL, Chen L, Mathews FS & Xia ZX (1994) Ionic strength dependence of the reaction between methanol dehydrogenase and cytochrome c-551i: evidence of conformationally coupled electron transfer. Biochemistry 33, 1260012608.
  • 50
    Wei CC, Wang ZQ, Tejero J, Yang YP, Hemann C, Hille R & Stuehr DJ (2008) Catalytic reduction of a tetrahydrobiopterin radical within nitric-oxide synthase. J Biol Chem 283, 1173411742.
  • 51
    Astashkin AV, Elmore BO, Fan W, Guillemette JG & Feng C (2010) Pulsed EPR determination of the distance between heme iron and FMN centers in a human inducible nitric oxide synthase. J Am Chem Soc 132, 1205912067.
  • 52
    Sevrioukova IF, Hazzard JT, Tollin G & Poulos TL (1999) The FMN to heme electron transfer in cytochrome P450BM-3. Effect of chemical modification of cysteines engineered at the FMN-heme domain interaction site. J Biol Chem 274, 3609736106.
  • 53
    Tejero J, Biswas A, Wang ZQ, Page RC, Haque MM, Hemann C, Zweier JL, Misra S & Stuehr DJ (2008) Stabilization and characterization of a heme-oxy reaction intermediate in inducible nitric-oxide synthase. J Biol Chem 283, 3349833507.
  • 54
    Tejero J, Biswas A, Haque MM, Wang ZQ, Hemann C, Varnado CL, Novince Z, Hille R, Goodwin DC & Stuehr DJ (2011) Mesohaem substitution reveals how haem electronic properties can influence the kinetic and catalytic parameters of neuronal NO synthase. Biochem J 433, 163174.
  • 55
    Giroud C, Moreau M, Mattioli TA, Balland V, Boucher JL, Xu-Li Y, Stuehr DJ & Santolini J (2010) Role of arginine guanidinium moiety in nitric-oxide synthase mechanism of oxygen activation. J Biol Chem 285, 72337245.
  • 56
    Boggs S, Huang L & Stuehr DJ (2000) Formation and reactions of the heme-dioxygen intermediate in the first and second steps of nitric oxide synthesis as studied by stopped-flow spectroscopy under single-turnover conditions. Biochemistry 39, 23322339.
  • 57
    Feng C & Tollin G (2009) Regulation of interdomain electron transfer in the NOS output state for NO production. Dalton Trans 34, 66926700.
  • 58
    Iwanaga T, Yamazaki T & Kominami S (1999) Kinetic studies on the successive reaction of neuronal nitric oxide synthase from L-arginine to nitric oxide and L-citrulline. Biochemistry 38, 1662916635.
  • 59
    Laverman LE, Wanat A, Oszajca J, Stochel G, Ford PC & van ER, (2001) Mechanistic studies on the reversible binding of nitric oxide to metmyoglobin. J Am Chem Soc 123, 285293.
  • 60
    Franke A, Stochel G, Jung C & van ER, (2004) Substrate binding favors enhanced NO binding to P450cam. J Am Chem Soc 126, 41814191.
  • 61
    Ford PC (2004) Probing fundamental mechanisms of nitric oxide reactions with metal centers. Pure Appl Chem 76, 335350.
  • 62
    Li D, Stuehr DJ, Yeh SR & Rousseau DL (2004) Heme distortion modulated by ligand-protein interactions in inducible nitric-oxide synthase. J Biol Chem 279, 2648926499.
  • 63
    Walker FA (2005) Nitric oxide interaction with insect nitrophorins and thoughts on the electron configuration of the {FeNO}6 complex. J Inorg Biochem 99, 216236.
  • 64
    Jain R & Chan MK (2003) Mechanisms of ligand discrimination by heme proteins. J Biol Inorg Chem 8, 111.
  • 65
    Sigfridsson E & Ryde U (2002) Theoretical study of the discrimination between O(2) and CO by myoglobin. J Inorg Biochem 91, 101115.
  • 66
    Wang ZQ, Wei CC & Stuehr DJ (2010) How does a valine residue that modulates heme-NO binding kinetics in inducible NO synthase regulate enzyme catalysis? J Inorg Biochem 104, 349356.
  • 67
    Whited CA, Warren JJ, Lavoie KD, Weinert EE, Agapie T, Winkler JR & Gray HB (2012) Gating NO release from nitric oxide synthase. J Am Chem Soc 134, 2730.
  • 68
    Adak S, Wang Q & Stuehr DJ (2000) Molecular basis for hyperactivity in tryptophan 409 mutants of neuronal NO synthase. J Biol Chem 275, 1743417439.
  • 69
    Adak S & Stuehr DJ (2001) A proximal tryptophan in NO synthase controls activity by a novel mechanism. J Inorg Biochem 83, 301308.
  • 70
    Haque MM, Fadlalla M, Wang ZQ, Ray SS, Panda K & Stuehr DJ (2009) Neutralizing a surface charge on the FMN subdomain increases the activity of neuronal nitric-oxide synthase by enhancing the oxygen reactivity of the enzyme heme-nitric oxide complex. J Biol Chem 284, 1923719247.
  • 71
    Moller JKS & Skibsted LH (2004) Mechanism of nitrosylmyoglobin autoxidation: temperature and oxygen pressure effects on the two consecutive reactions. Chem - Eur J 10, 22912300.
  • 72
    Abu-Soud HM, Rousseau DL & Stuehr DJ (1996) Nitric oxide binding to the heme of neuronal nitric-oxide synthase links its activity to changes in oxygen tension. J Biol Chem 271, 3251532518.
  • 73
    Adak S, Crooks C, Wang Q, Crane BR, Tainer JA, Getzoff ED & Stuehr DJ (1999) Tryptophan 409 controls the activity of neuronal nitric-oxide synthase by regulating nitric oxide feedback inhibition. J Biol Chem 274, 2690726911.
  • 74
    Briese E (1998) Normal body temperature of rats: the setpoint controversy. Neurosci Biobehav Rev 22, 427436.
  • 75
    Owens NC, Ootsuka Y, Kanosue K & McAllen RM (2002) Thermoregulatory control of sympathetic fibres supplying the rat's tail. J Physiol 543, 849858.
  • 76
    Panda K, Haque MM, Garcin-Hosfield ED, Durra D, Getzoff ED & Stuehr DJ (2006) Surface charge interactions of the FMN module govern catalysis by nitric-oxide synthase. J Biol Chem 281, 3681936827.
  • 77
    Adak S, Santolini J, Tikunova S, Wang Q, Johnson JD & Stuehr DJ (2001) Neuronal nitric-oxide synthase mutant (Ser-1412 [RIGHTWARDS ARROW] Asp) demonstrates surprising connections between heme reduction, NO complex formation, and catalysis. J Biol Chem 276, 12441252.
  • 78
    Mendes P (1997) Biochemistry by numbers: simulation of biochemical pathways with Gepasi 3. Trends Biochem Sci 22, 361363.