SEARCH

SEARCH BY CITATION

References

  • 1
    Parge HE, Hallewell RA & Tainer JA (1992) Atomic structures of wild-type and thermostable mutant recombinant human Cu, Zn superoxide dismutase. Proc Natl Acad Sci USA 89, 61096113.
  • 2
    Schmidt PJ, Kunst C & Culotta VC (2000) Copper activation of superoxide dismutase 1 (SOD1) in vivo. Role for protein–protein interactions with the copper chaperone for SOD1. J Biol Chem 275, 3377133776.
  • 3
    Arnesano F, Banci L, Bertini I, Martinelli M, Furukawa Y & O'Halloran TV (2004) The unusually stable quaternary structure of human Cu, Zn-superoxide dismutase 1 is controlled by both metal occupancy and disulfide status. J Biol Chem 279, 4799848003.
  • 4
    Culotta VC, Yang M & O'Halloran TV (2006) Activation of superoxide dismutases: putting the metal to the pedal. Biochim Biophys Acta 1763, 747758.
  • 5
    Culotta VC, Klomp LW, Strain J, Casareno RL, Krems B & Gitlin JD (1997) The copper chaperone for superoxide dismutase. J Biol Chem 272, 2346923472.
  • 6
    Field LS, Furukawa Y, O'Halloran TV & Culotta VC (2003) Factors controlling the uptake of yeast copper/zinc superoxide dismutase into mitochondria. J Biol Chem 278, 2805228059.
  • 7
    Furukawa Y, Torres AS & O'Halloran TV (2004) Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. EMBO J 23, 28722881.
  • 8
    Banci L, Bertini I, Cantini F, Kozyreva T, Massagni C, Palumaa P, Rubino JT & Zovo K (2012) Human superoxide dismutase 1 (hSOD1) maturation through interaction with human copper chaperone for SOD1 (hCCS). Proc Natl Acad Sci USA 109, 1355513560.
  • 9
    Rosen DR (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 5962.
  • 10
    Valentine JS, Doucette PA & Zittin Potter S (2005) Copper–zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu Rev Biochem 74, 563593.
  • 11
    Shaw BF & Valentine JS (2007) How do ALS-associated mutations in superoxide dismutase 1 promote aggregation of the protein? Trends Biochem Sci 32, 7885.
  • 12
    Carrì MT & Cozzolino M (2011) SOD1 and mitochondria in ALS: a dangerous liaison. J Bioenerg Biomembr 43, 593599.
  • 13
    Bruns CK & Kopito RR (2007) Impaired post-translational folding of familial ALS-linked Cu, Zn superoxide dismutase mutants. EMBO J 26, 855866.
  • 14
    Wang J, Farr GW, Zeiss CJ, Rodriquez-Gil GJ, Wilson JH, Furtak K, Rutkowski DT, Kaufman RJ, Ruse CI, Yates JR III et al. (2009) Progressive aggregation despite chaperone associations of a mutant SOD1–YFP in transgenic mice that develop ALS. Proc Natl Acad Sci USA 106, 13921397.
  • 15
    Jaarsma D, Rognoni F, van Duijn W, Verspaget HW, Haasdijk ED & Holstege JC (2001) CuZn superoxide dismutase (SOD1) accumulates in vacuolated mitochondria in transgenic mice expressing amyotrophic lateral sclerosis-linked SOD1 mutations. Acta Neuropathol 102, 293305.
  • 16
    Higgins CM, Jung C & Xu Z (2003) ALS-associated mutant SOD1G93A causes mitochondrial vacuolation by expansion of the intermembrane space and by involvement of SOD1 aggregation and peroxisomes. BMC Neurosci 4, 16.
  • 17
    Liu J, Lillo C, Jonsson PA, Vande Velde C, Ward CM, Miller TM, Subramaniam JR, Rothstein JD, Marklund S, Andersen PM et al. (2004) Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria. Neuron 43, 517.
  • 18
    Manfredi G & Xu Z (2005) Mitochondrial dysfunction and its role in motor neuron degeneration in ALS. Mitochondrion 5, 7787.
  • 19
    Vande Velde C, Miller TM, Cashman NR & Cleveland DW (2008) Selective association of misfolded ALS-linked mutant SOD1 with the cytoplasmic face of mitochondria. Proc Natl Acad Sci USA 105, 40224027.
  • 20
    Li Q, Vande Velde C, Israelson A, Xie J, Bailey AO, Dong MQ, Chun SJ, Roy T, Winer L, Yates JR et al. (2010) ALS-linked mutant superoxide dismutase 1 (SOD1) alters mitochondrial protein composition and decreases protein import. Proc Natl Acad Sci USA 107, 2114621151.
  • 21
    Okado-Matsumoto A & Fridovich I (2001) Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu, Zn-SOD in mitochondria. J Biol Chem 276, 3838838393.
  • 22
    Sturtz LA, Diekert K, Jensen LT, Lill R & Culotta VC (2001) A fraction of yeast Cu, Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem 276, 3808438089.
  • 23
    Klöppel C, Michels C, Zimmer J, Herrmann JM & Riemer J (2010) In yeast redistribution of Sod1 to the mitochondrial intermembrane space provides protection against respiration derived oxidative stress. Biochem Biophys Res Commun 403, 114119.
  • 24
    Chattopadhyay M & Valentine JS (2009) Aggregation of copper–zinc superoxide dismutase in familial and sporadic ALS. Antioxid Redox Signal 11, 16031614.
  • 25
    Rae TD, Torres AS, Pufahl RA & O'Halloran TV (2001) Mechanism of Cu, Zn-superoxide dismutase activation by the human metallochaperone hCCS. J Biol Chem 276, 51665176.
  • 26
    Kirby K, Jensen LT, Binnington J, Hilliker AJ, Ulloa J, Culotta VC & Phillips JP (2008) Instability of superoxide dismutase 1 of Drosophila in mutants deficient for its cognate copper chaperone. J Biol Chem 283, 3539335401.
  • 27
    Kawamata H & Manfredi G (2010) Import, maturation, and function of SOD1 and its copper chaperone CCS in the mitochondrial intermembrane space. Antioxid Redox Signal 13, 13751384.
  • 28
    Kawamata H & Manfredi G (2008) Different regulation of wild-type and mutant Cu, Zn superoxide dismutase localization in mammalian mitochondria. Hum Mol Genet 17, 33033317.
  • 29
    Reddehase S, Grumbt B, Neupert W & Hell K (2009) The disulfide relay system of mitochondria is required for the biogenesis of mitochondrial Ccs1 and Sod1. J Mol Biol 385, 331338.
  • 30
    Gross DP, Burgard CA, Reddehase S, Leitch JM, Culotta VC & Hell K (2011) Mitochondrial Ccs1 contains a structural disulfide bond crucial for the import of this unconventional substrate by the disulfide relay system. Mol Biol Cell 22, 37583767.
  • 31
    Endo T, Yamano K & Kawano S (2010) Structural basis for the disulfide relay system in the mitochondrial intermembrane space. Antioxid Redox Signal 13, 13591373.
  • 32
    Sideris DP & Tokatlidis K (2010) Oxidative protein folding in the mitochondrial intermembrane space. Antioxid Redox Signal 13, 11891204.
  • 33
    Herrmann JM & Riemer J (2012) Mitochondrial disulfide relay: redox-regulated protein import into the intermembrane space. J Biol Chem 287, 44264433.
  • 34
    Stojanovski D, Bragoszewski P & Chacinska A (2012) The MIA pathway: a tight bond between protein transport and oxidative folding in mitochondria. Biochim Biophys Acta 1823, 11421150.
  • 35
    Tienson HL, Dabir DV, Neal SE, Loo R, Hasson SA, Boontheung P, Kim SK, Loo JA & Koehler CM (2009) Reconstitution of the Mia40–Erv1 oxidative folding pathway for the small Tim proteins. Mol Biol Cell 20, 34813490.
  • 36
    Banci L, Bertini I, Cefaro C, Cenacchi L, Ciofi-Baffoni S, Felli IC, Gallo A, Gonnelli L, Luchinat E, Sideris D et al. (2010) Molecular chaperone function of Mia40 triggers consecutive induced folding steps of the substrate in mitochondrial protein import. Proc Natl Acad Sci USA 107, 2019020195.
  • 37
    Bien M, Longen S, Wagener N, Chwalla I, Herrmann JM & Riemer J (2010) Mitochondrial disulfide bond formation is driven by intersubunit electron transfer in Erv1 and proofread by glutathione. Mol Cell 37, 516528.
  • 38
    Böttinger L, Gornicka A, Czerwik T, Bragoszewski P, Loniewska-Lwowska A, Schulze-Specking A, Truscott KN, Guiard B, Milenkovic D & Chacinska A (2012) In vivo evidence for cooperation of Mia40 and Erv1 in the oxidation of mitochondrial proteins. Mol Biol Cell 23, 39573969.
  • 39
    Hofmann S, Rothbauer U, Mühlenbein N, Baiker K, Hell K & Bauer MF (2005) Functional and mutational characterization of human MIA40 acting during import into the mitochondrial intermembrane space. J Mol Biol 353, 517528.
  • 40
    Chacinska A, Guiard B, Müller JM, Schulze-Specking A, Gabriel K, Kutik S & Pfanner N (2008) Mitochondrial biogenesis, switching the sorting pathway of the intermembrane space receptor Mia40. J Biol Chem 283, 2972329729.
  • 41
    Sztolsztener ME, Brewinska A, Guiard B & Chacinska A (2013) Disulfide bond formation: sulfhydryl oxidase ALR controls mitochondrial biogenesis of human MIA40. Traffic 14, 309320.
  • 42
    Klöppel C, Suzuki Y, Kojer K, Petrungaro C, Longen S, Fiedler S, Keller S & Riemer J (2011) Mia40-dependent oxidation of cysteines in domain I of Ccs1 controls its distribution between mitochondria and the cytosol. Mol Biol Cell 22, 37493757.
  • 43
    Vijayvergiya C, Beal MF, Buck J & Manfredi G (2005) Mutant superoxide dismutase 1 forms aggregates in the brain mitochondrial matrix of amyotrophic lateral sclerosis mice. J Neurosci 25, 24632470.
  • 44
    Ferri A, Cozzolino M, Crosio C, Nencini M, Casciati A, Gralla EB, Rotilio G, Valentine JS & Carrì MT (2006) Familial ALS-superoxide dismutases associate with mitochondria and shift their redox potentials. Proc Natl Acad Sci USA 103, 1386013865.
  • 45
    Harner M, Körner C, Walther D, Mokranjac D, Kaesmacher J, Welsch U, Griffith J, Mann M, Reggiori F & Neupert W (2011) The mitochondrial contact site complex, a determinant of mitochondrial architecture. EMBO J 30, 43564370.
  • 46
    Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, Devay RM, Lackner LL, Westermann B, Schuldiner M, Weissman JS & Nunnari J (2011) A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J Cell Biol 195, 323340.
  • 47
    von der Malsburg K, Müller JM, Bohnert M, Oeljeklaus S, Kwiatkowska P, Becker T, Loniewska-Lwowska A, Wiese S, Rao S, Milenkovic D et al. (2011) Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev Cell 21, 694707.
  • 48
    Alkhaja AK, Jans DC, Nikolov M, Vukotic M, Lytovchenko O, Ludewig F, Schliebs W, Riedel D, Urlaub H, Jakobs S et al. (2012) MINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organization. Mol Biol Cell 23, 247257.
  • 49
    Chacinska A, Pfannschmidt S, Wiedemann N, Kozjak V, Sanjuán Szklarz LK, Schulze-Specking A, Truscott KN, Guiard B, Meisinger C & Pfanner N (2004) Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins. EMBO J 23, 37353746.
  • 50
    Wrobel L, Trojanowska A, Sztolsztener ME & Chacinska A (2013) Mitochondrial protein import: Mia40 facilitates Tim22 translocation into the inner membrane of mitochondria. Mol Biol Cell 24, 543554.
  • 51
    Rissler M, Wiedemann N, Pfannschmidt S, Gabriel K, Guiard B, Pfanner N & Chacinska A (2005) The essential mitochondrial protein Erv1 cooperates with Mia40 in biogenesis of intermembrane space proteins. J Mol Biol 353, 485492.
  • 52
    Kawano S, Yamano K, Naoé M, Momose T, Terao K, Nishikawa S, Watanabe N & Endo T (2009) Structural basis of yeast Tim40/Mia40 as an oxidative translocator in the mitochondrial intermembrane space. Proc Natl Acad Sci USA 106, 1440314407.
  • 53
    Rakhit R, Cunningham P, Furtos-Matei A, Dahan S, Qi XF, Crow JP, Cashman NR, Kondejewski LH & Chakrabartty A (2002) Oxidation-induced misfolding and aggregation of superoxide dismutase and its implications for amyotrophic lateral sclerosis. J Biol Chem 277, 4755147556.
  • 54
    Hart PJ (2006) Pathogenic superoxide dismutase structure, folding, aggregation and turnover. Curr Opin Chem Biol 10, 131138.
  • 55
    Furukawa Y, Kaneko K, Yamanaka K, O'Halloran TV & Nukina N (2008) Complete loss of post-translational modifications triggers fibrillar aggregation of SOD1 in the familial form of amyotrophic lateral sclerosis. J Biol Chem 283, 2416724176.
  • 56
    Karch CM, Prudencio M, Winkler DD, Hart PJ & Borchelt DR (2009) Role of mutant SOD1 disulfide oxidation and aggregation in the pathogenesis of familial ALS. Proc Natl Acad Sci USA 106, 77747779.
  • 57
    Banci L, Bertini I, Calderone V, Cefaro C, Ciofi-Baffoni S, Gallo A, Kallergi E, Lionaki E, Pozidis C & Tokatlidis K (2011) Molecular recognition and substrate mimicry drive the electron-transfer process between MIA40 and ALR. Proc Natl Acad Sci USA 108, 48114816.
  • 58
    Weckbecker D, Longen S, Riemer J & Herrmann JM (2012) Atp23 biogenesis reveals a chaperone-like folding activity of Mia40 in the IMS of mitochondria. EMBO J 31, 43484358.
  • 59
    Zerbes RM, van der Klei IJ, Veenhuis M, Pfanner N, van der Laan M & Bohnert M (2012) Mitofilin complexes: conserved organizers of mitochondrial membrane architecture. Biol Chem 393, 12471261.
  • 60
    Sikorski RS & Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 1927.
  • 61
    Meisinger C, Pfanner N & Truscott KN (2006) Isolation of yeast mitochondria. Methods Mol Biol 313, 3339.
  • 62
    Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248254.