• 1
    Golovina VA & Blaustein MP (1997) Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science 275, 16431648.
  • 2
    Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16, 521555.
  • 3
    Gustafsson F, Andreasen D, Salomonsson M, Jensen BL & Holstein-Rathlou N (2001) Conducted vasoconstriction in rat mesenteric arterioles: role for dihydropyridine-insensitive Ca(2+) channels. Am J Physiol Heart Circ Physiol 280, H582H590.
  • 4
    Hansen PB, Jensen BL, Andreasen D & Skott O (2001) Differential expression of T- and L-type voltage-dependent calcium channels in renal resistance vessels. Circ Res 89, 630638.
  • 5
    Hansen PB, Jensen BL, Andreasen D, Friis UG & Skott O (2000) Vascular smooth muscle cells express the alpha(1A) subunit of a P-/Q-type voltage-dependent Ca(2+) channel, and it is functionally important in renal afferent arterioles. Circ Res 87, 896902.
  • 6
    Andreasen D, Friis UG, Uhrenholt TR, Jensen BL, Skott O & Hansen PB (2006) Coexpression of voltage-dependent calcium channels Cav1.2, 2.1a, and 2.1b in vascular myocytes. Hypertension 47, 735741.
  • 7
    Inoue R & Mori Y (2002) Molecular candidates for capacitative and non-capacitative Ca2+ entry in smooth muscle. Novartis Found Symp, 246, 8190; discussion 221–227.
  • 8
    Leung FP, Yung LM, Yao X, Laher I & Huang Y (2008) Store-operated calcium entry in vascular smooth muscle. Br J Pharmacol 153, 846857.
  • 9
    Albert AP, Saleh SN, Peppiatt-Wildman CM & Large WA (2007) Multiple activation mechanisms of store-operated TRPC channels in smooth muscle cells. J Physiol 583, 2536.
  • 10
    Knot HJ, Standen NB & Nelson MT (1998) Ryanodine receptors regulate arterial diameter and wall [Ca2+] in cerebral arteries of rat via Ca2+-dependent K+ channels. J Physiol 508, 211221.
  • 11
    Berridge MJ, Bootman MD & Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4, 517529.
  • 12
    Aalkjaer C, Boedtkjer D & Matchkov V (2011) Vasomotion – what is currently thought? Acta Physiol (Oxf) 202, 253269.
  • 13
    Bootman MD, Collins TJ, Peppiatt CM, Prothero LS, MacKenzie L, De SP, Travers M, Tovey SC, Seo JT, Berridge MJ et al. (2001) Calcium signalling – an overview. Semin Cell Dev Biol 12, 310.
  • 14
    Berridge MJ, Lipp P & Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1, 1121.
  • 15
    Hill-Eubanks DC, Werner ME, Heppner TJ & Nelson MT (2011) Calcium signaling in smooth muscle. Cold Spring Harb Perspect Biol 3, a004549a004569.
  • 16
    Wamhoff BR, Bowles DK & Owens GK (2006) Excitation–transcription coupling in arterial smooth muscle. Circ Res 98, 868878.
  • 17
    Miano JM, Vlasic N, Tota RR & Stemerman MB (1993) Smooth muscle cell immediate-early gene and growth factor activation follows vascular injury. A putative in vivo mechanism for autocrine growth. Arterioscler Thromb 13, 211219.
  • 18
    Ren J, Albinsson S & Hellstrand P (2010) Distinct effects of voltage- and store-dependent calcium influx on stretch-induced differentiation and growth in vascular smooth muscle. J Biol Chem 285, 3182931839.
  • 19
    House SJ, Potier M, Bisaillon J, Singer HA & Trebak M (2008) The non-excitable smooth muscle: calcium signaling and phenotypic switching during vascular disease. Pflugers Arch 456, 769785.
  • 20
    Owens GK, Kumar MS & Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84, 767801.
  • 21
    Orr AW, Hastings NE, Blackman BR & Wamhoff BR (2010) Complex regulation and function of the inflammatory smooth muscle cell phenotype in atherosclerosis. J Vasc Res 47, 168180.
  • 22
    Aoshima D, Murata T, Hori M & Ozaki H (2009) Time-dependent phenotypic and contractile changes of pulmonary artery in chronic hypoxia-induced pulmonary hypertension. J Pharmacol Sci 110, 182190.
  • 23
    Rensen SS, Doevendans PA & van Eys GJ (2007) Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J 15, 100108.
  • 24
    Ueki N, Sobue K, Kanda K, Hada T & Higashino K (1987) Expression of high and low molecular weight caldesmons during phenotypic modulation of smooth muscle cells. Proc Natl Acad Sci USA 84, 90499053.
  • 25
    Tharp DL, Wamhoff BR, Turk JR & Bowles DK (2006) Upregulation of intermediate-conductance Ca2+-activated K+ channel (IKCa1) mediates phenotypic modulation of coronary smooth muscle. Am J Physiol Heart Circ Physiol 291, H2493H2503.
  • 26
    Sung HJ, Eskin SG, Sakurai Y, Yee A, Kataoka N & McIntire LV (2005) Oxidative stress produced with cell migration increases synthetic phenotype of vascular smooth muscle cells. Ann Biomed Eng 33, 15461554.
  • 27
    Zhang QJ, Goddard M, Shanahan C, Shapiro L & Bennett M (2002) Differential gene expression in vascular smooth muscle cells in primary atherosclerosis and in stent stenosis in humans. Arterioscler Thromb Vasc Biol 22, 20302036.
  • 28
    Lindop GB, Boyle JJ, McEwan P & Kenyon CJ (1995) Vascular structure, smooth muscle cell phenotype and growth in hypertension. J Hum Hypertens 9, 475478.
  • 29
    Dewachter L, Adnot S, Guignabert C, Tu L, Marcos E, Fadel E, Humbert M, Dartevelle P, Simonneau G, Naeije R et al. (2009) Bone morphogenetic protein signalling in heritable versus idiopathic pulmonary hypertension. Eur Respir J 34, 11001110.
  • 30
    Tabara Y, Kohara K & Miki T (2012) Hunting for genes for hypertension: the Millennium Genome Project for Hypertension. Hypertens Res 35, 567573.
  • 31
    Law RE, Goetze S, Xi XP, Jackson S, Kawano Y, Demer L, Fishbein MC, Meehan WP & Hsueh WA (2000) Expression and function of PPARgamma in rat and human vascular smooth muscle cells. Circulation 101, 13111318.
  • 32
    Zhang L, Xie P, Wang J, Yang Q, Fang C, Zhou S & Li J (2010) Impaired peroxisome proliferator-activated receptor-gamma contributes to phenotypic modulation of vascular smooth muscle cells during hypertension. J Biol Chem 285, 1366613677.
  • 33
    Barroso I, Gurnell M, Crowley VE, Agostini M, Schwabe JW, Soos MA, Maslen GL, Williams TD, Lewis H, Schafer AJ et al. (1999) Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402, 880883.
  • 34
    Bito H, Deisseroth K & Tsien RW (1997) Ca2+-dependent regulation in neuronal gene expression. Curr Opin Neurobiol 7, 419429.
  • 35
    Martianov I, Choukrallah MA, Krebs A, Ye T, Legras S, Rijkers E, Van IW, Jost B, Sassone-Corsi P & Davidson I (2010) Cell-specific occupancy of an extended repertoire of CREM and CREB binding loci in male germ cells. BMC Genomics 11, 530546.
  • 36
    Sassone-Corsi P (1995) Transcription factors responsive to cAMP. Annu Rev Cell Dev Biol 11, 355377.
  • 37
    Garcin I & Tordjmann T (2012) Calcium signalling and liver regeneration. Int J Hepatol 2012, 630670. doi:10.1155/2012/630670.
  • 38
    Cartin L, Lounsbury KM & Nelson MT (2000) Coupling of Ca(2+) to CREB activation and gene expression in intact cerebral arteries from mouse: roles of ryanodine receptors and voltage-dependent Ca(2+) channels. Circ Res 86, 760767.
  • 39
    Janknecht R & Hunter T (1996) Versatile molecular glue. Transcriptional control. Curr Biol 6, 951954.
  • 40
    Sun P, Enslen H, Myung PS & Maurer RA (1994) Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev 8, 25272539.
  • 41
    Stevenson AS, Cartin L, Wellman TL, Dick MH, Nelson MT & Lounsbury KM (2001) Membrane depolarization mediates phosphorylation and nuclear translocation of CREB in vascular smooth muscle cells. Exp Cell Res 263, 118130.
  • 42
    Pulver RA, Rose-Curtis P, Roe MW, Wellman GC & Lounsbury KM (2004) Store-operated Ca2+ entry activates the CREB transcription factor in vascular smooth muscle. Circ Res 94, 13511358.
  • 43
    Takahashi Y, Watanabe H, Murakami M, Ono K, Munehisa Y, Koyama T, Nobori K, Iijima T & Ito H (2007) Functional role of stromal interaction molecule 1 (STIM1) in vascular smooth muscle cells. Biochem Biophys Res Commun 361, 934940.
  • 44
    Barlow CA, Rose P, Pulver-Kaste RA & Lounsbury KM (2006) Excitation–transcription coupling in smooth muscle. J Physiol 570, 5964.
  • 45
    Wellman GC & Nelson MT (2003) Signaling between SR and plasmalemma in smooth muscle: sparks and the activation of Ca2+-sensitive ion channels. Cell Calcium 34, 211229.
  • 46
    Pulver-Kaste RA, Barlow CA, Bond J, Watson A, Penar PL, Tranmer B & Lounsbury KM (2006) Ca2+ source-dependent transcription of CRE-containing genes in vascular smooth muscle. Am J Physiol Heart Circ Physiol 291, H97105.
  • 47
    Najwer I & Lilly B (2005) Ca2+/calmodulin-dependent protein kinase IV activates cysteine-rich protein 1 through adjacent CRE and CArG elements. Am J Physiol Cell Physiol 289, C785C793.
  • 48
    Tilley DG & Maurice DH (2005) Vascular smooth muscle cell phenotype-dependent phosphodiesterase 4D short form expression: role of differential histone acetylation on cAMP-regulated function. Mol Pharmacol 68, 596605.
  • 49
    Tokunou T, Ichiki T, Takeda K, Funakoshi Y, Iino N & Takeshita A (2001) cAMP response element-binding protein mediates thrombin-induced proliferation of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 21, 17641769.
  • 50
    Fukuyama K, Ichiki T, Ono H, Tokunou T, Iino N, Masuda S, Ohtsubo H & Takeshita A (2005) cAMP-response element-binding protein mediates prostaglandin F2alpha-induced hypertrophy of vascular smooth muscle cells. Biochem Biophys Res Commun 338, 910918.
  • 51
    Wellman GC, Cartin L, Eckman DM, Stevenson AS, Saundry CM, Lederer WJ & Nelson MT (2001) Membrane depolarization, elevated Ca(2+) entry, and gene expression in cerebral arteries of hypertensive rats. Am J Physiol Heart Circ Physiol 281, H2559H2567.
  • 52
    Klemm DJ, Watson PA, Frid MG, Dempsey EC, Schaack J, Colton LA, Nesterova A, Stenmark KR & Reusch JE (2001) cAMP response element-binding protein content is a molecular determinant of smooth muscle cell proliferation and migration. J Biol Chem 276, 4613246141.
  • 53
    Watson PA, Nesterova A, Burant CF, Klemm DJ & Reusch JE (2001) Diabetes-related changes in cAMP response element-binding protein content enhance smooth muscle cell proliferation and migration. J Biol Chem 276, 4614246150.
  • 54
    Rao A, Luo C & Hogan PG (1997) Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 15, 707747.
  • 55
    Schulz RA & Yutzey KE (2004) Calcineurin signaling and NFAT activation in cardiovascular and skeletal muscle development. Dev Biol 266, 116.
  • 56
    Nilsson LM, Nilsson-Ohman J, Zetterqvist AV & Gomez MF (2008) Nuclear factor of activated T-cells transcription factors in the vasculature: the good guys or the bad guys? Curr Opin Lipidol 19, 483490.
  • 57
    Nilsson LM, Sun ZW, Nilsson J, Nordstrom I, Chen YW, Molkentin JD, Wide-Swensson D, Hellstrand P, Lydrup ML & Gomez MF (2007) Novel blocker of NFAT activation inhibits IL-6 production in human myometrial arteries and reduces vascular smooth muscle cell proliferation. Am J Physiol Cell Physiol 292, C1167C1178.
  • 58
    Hill-Eubanks DC, Gomez MF, Stevenson AS & Nelson MT (2003) NFAT regulation in smooth muscle. Trends Cardiovasc Med 13, 5662.
  • 59
    Hogan PG, Chen L, Nardone J & Rao A (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17, 22052232.
  • 60
    Stevenson AS, Gomez MF, Hill-Eubanks DC & Nelson MT (2001) NFAT4 movement in native smooth muscle. A role for differential Ca(2+) signaling. J Biol Chem 276, 1501815024.
  • 61
    Gomez MF, Stevenson AS, Bonev AD, Hill-Eubanks DC & Nelson MT (2002) Opposing actions of inositol 1,4,5-trisphosphate and ryanodine receptors on nuclear factor of activated T-cells regulation in smooth muscle. J Biol Chem 277, 3775637764.
  • 62
    Hou X, Chen J, Luo Y, Liu F, Xu G & Gao Y (2013) Silencing of STIM1 attenuates hypoxia-induced PASMCs proliferation via inhibition of the SOC/Ca2+/NFAT pathway. Respir Res 14, 212.
  • 63
    Bierer R, Nitta CH, Friedman J, Codianni S, de Frutos S, Dominguez-Bautista JA, Howard TA, Resta TC & Bosc LV (2011) NFATc3 is required for chronic hypoxia-induced pulmonary hypertension in adult and neonatal mice. Am J Physiol Lung Cell Mol Physiol 301, L872L880.
  • 64
    Zhang W, Halligan KE, Zhang X, Bisaillon JM, Gonzalez-Cobos JC, Motiani RK, Hu G, Vincent PA, Zhou J, Barroso M et al. (2011) Orai1-mediated I (CRAC) is essential for neointima formation after vascular injury. Circ Res 109, 534542.
  • 65
    Matchkov VV, Kudryavtseva O & Aalkjaer C (2012) Intracellular Ca(2)(+) signalling and phenotype of vascular smooth muscle cells. Basic Clin Pharmacol Toxicol 110, 4248.
  • 66
    Putney JW (2012) Calcium signaling: deciphering the calcium–NFAT pathway. Curr Biol 22, R87R89.
  • 67
    Kar P, Bakowski D, Di CJ, Nelson C & Parekh AB (2012) Different agonists recruit different stromal interaction molecule proteins to support cytoplasmic Ca2+ oscillations and gene expression. Proc Natl Acad Sci USA 109, 69696974.
  • 68
    Colella M, Grisan F, Robert V, Turner JD, Thomas AP & Pozzan T (2008) Ca2+ oscillation frequency decoding in cardiac cell hypertrophy: role of calcineurin/NFAT as Ca2+ signal integrators. Proc Natl Acad Sci USA 105, 28592864.
  • 69
    Kawano S, Otsu K, Kuruma A, Shoji S, Yanagida E, Muto Y, Yoshikawa F, Hirayama Y, Mikoshiba K & Furuichi T (2006) ATP autocrine/paracrine signaling induces calcium oscillations and NFAT activation in human mesenchymal stem cells. Cell Calcium 39, 313324.
  • 70
    Liu Z, Zhang C, Dronadula N, Li Q & Rao GN (2005) Blockade of nuclear factor of activated T cells activation signaling suppresses balloon injury-induced neointima formation in a rat carotid artery model. J Biol Chem 280, 1470014708.
  • 71
    Esteban V, Mendez-Barbero N, Jimenez-Borreguero LJ, Roque M, Novensa L, Garcia-Redondo AB, Salaices M, Vila L, Arbones ML, Campanero MR et al. (2011) Regulator of calcineurin 1 mediates pathological vascular wall remodeling. J Exp Med 208, 21252139.
  • 72
    de Frutos S, Spangler R, Alo D & Bosc LV (2007) NFATc3 mediates chronic hypoxia-induced pulmonary arterial remodeling with alpha-actin up-regulation. J Biol Chem 282, 1508115089.
  • 73
    Berglund LM, Kotova O, Osmark P, Grufman H, Xing C, Lydrup ML, Goncalves I, Autieri MV & Gomez MF (2012) NFAT regulates the expression of AIF-1 and IRT-1: yin and yang splice variants of neointima formation and atherosclerosis. Cardiovasc Res 93, 414423.
  • 74
    Wada H, Hasegawa K, Morimoto T, Kakita T, Yanazume T, Abe M & Sasayama S (2002) Calcineurin–GATA-6 pathway is involved in smooth muscle-specific transcription. J Cell Biol 156, 983991.
  • 75
    Gonzalez Bosc LV, Layne JJ, Nelson MT & Hill-Eubanks DC (2005) Nuclear factor of activated T cells and serum response factor cooperatively regulate the activity of an alpha-actin intronic enhancer. J Biol Chem 280, 2611326120.
  • 76
    Lee MY, Garvey SM, Ripley ML & Wamhoff BR (2011) Genome-wide microarray analyses identify the protein C receptor as a novel calcineurin/nuclear factor of activated T cells-dependent gene in vascular smooth muscle cell phenotypic modulation. Arterioscler Thromb Vasc Biol 31, 26652675.
  • 77
    Layne JJ, Werner ME, Hill-Eubanks DC & Nelson MT (2008) NFATc3 regulates BK channel function in murine urinary bladder smooth muscle. Am J Physiol Cell Physiol 295, C611C623.
  • 78
    Amberg GC, Rossow CF, Navedo MF & Santana LF (2004) NFATc3 regulates Kv2.1 expression in arterial smooth muscle. J Biol Chem 279, 4732647334.
  • 79
    Miano JM (2003) Serum response factor: toggling between disparate programs of gene expression. J Mol Cell Cardiol 35, 577593.
  • 80
    Parmacek MS (2007) Myocardin-related transcription factors: critical coactivators regulating cardiovascular development and adaptation. Circ Res 100, 633644.
  • 81
    Chen J, Kitchen CM, Streb JW & Miano JM (2002) Myocardin: a component of a molecular switch for smooth muscle differentiation. J Mol Cell Cardiol 34, 13451356.
  • 82
    Jie W, Guo J, Shen Z, Wang X, Zheng S, Wang G & Ao Q (2010) Contribution of myocardin in the hypoxia-induced phenotypic switching of rat pulmonary arterial smooth muscle cells. Exp Mol Pathol 89, 301306.
  • 83
    Wamhoff BR, Bowles DK, McDonald OG, Sinha S, Somlyo AP, Somlyo AV & Owens GK (2004) L-type voltage-gated Ca2+ channels modulate expression of smooth muscle differentiation marker genes via a rho kinase/myocardin/SRF-dependent mechanism. Circ Res 95, 406414.
  • 84
    De Jongh KS, Warner C, Colvin AA & Catterall WA (1991) Characterization of the two size forms of the alpha 1 subunit of skeletal muscle L-type calcium channels. Proc Natl Acad Sci USA 88, 1077810782.
  • 85
    De Jongh KS, Murphy BJ, Colvin AA, Hell JW, Takahashi M & Catterall WA (1996) Specific phosphorylation of a site in the full-length form of the alpha 1 subunit of the cardiac L-type calcium channel by adenosine 3′,5′-cyclic monophosphate-dependent protein kinase. Biochemistry 35, 1039210402.
  • 86
    Gomez-Ospina N, Tsuruta F, Barreto-Chang O, Hu L & Dolmetsch R (2006) The C terminus of the L-type voltage-gated calcium channel Ca(V)1.2 encodes a transcription factor. Cell 127, 591606.
  • 87
    De Jongh KS, Colvin AA, Wang KK & Catterall WA (1994) Differential proteolysis of the full-length form of the L-type calcium channel alpha 1 subunit by calpain. J Neurochem 63, 15581564.
  • 88
    Hulme JT, Yarov-Yarovoy V, Lin TW, Scheuer T & Catterall WA (2006) Autoinhibitory control of the CaV1.2 channel by its proteolytically processed distal C-terminal domain. J Physiol 576, 87102.
  • 89
    Wei X, Neely A, Lacerda AE, Olcese R, Stefani E, Perez-Reyes E & Birnbaumer L (1994) Modification of Ca2+ channel activity by deletions at the carboxyl terminus of the cardiac alpha 1 subunit. J Biol Chem 269, 16351640.
  • 90
    Gomez-Ospina N, Panagiotakos G, Portmann T, Pasca SP, Rabah D, Budzillo A, Kinet JP & Dolmetsch RE (2013) A promoter in the coding region of the calcium channel gene CACNA1C generates the transcription factor CCAT. PLoS One 8, e60526.
  • 91
    Schroder E, Byse M & Satin J (2009) L-type calcium channel C terminus autoregulates transcription. Circ Res 104, 13731381.
  • 92
    Bannister JP, Dennisleo M, Narayanan D, Jangsangthong W, Nair A, Evanson KW, Pachuau J, Gabrick KS, Boop FA & Jaggar JH (2013) The CaV1.2 channel C-terminus fragment is a bi-modal vasodilator. J Physiol 591, 29872998.
  • 93
    Schauer IE, Knaub LA, Lloyd M, Watson PA, Gliwa C, Lewis KE, Chait A, Klemm DJ, Gunter JM, Bouchard R et al. (2010) CREB downregulation in vascular disease: a common response to cardiovascular risk. Arterioscler Thromb Vasc Biol 30, 733741.
  • 94
    Arguin G, Caron AZ, Elkoreh G, Denault JB & Guillemette G (2010) The transcription factors NFAT and CREB have different susceptibilities to the reduced Ca2+ responses caused by the knock down of inositol trisphosphate receptor in HEK 293A cells. Cell Physiol Biochem 26, 629640.
  • 95
    Dolmetsch R (2003) Excitation–transcription coupling: signaling by ion channels to the nucleus. Sci STKE 166, pe4pe9.
  • 96
    Wu GY, Deisseroth K & Tsien RW (2001) Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA 98, 28082813.
  • 97
    Li Z & Xie Z (2009) The Na/K-ATPase/Src complex and cardiotonic steroid-activated protein kinase cascades. Pflugers Arch 457, 635644.