SEARCH

SEARCH BY CITATION

References

  • 1
    Vonsattel JP & DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57, 369384.
  • 2
    Huntington's Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971983.
  • 3
    Persichetti F, Ambrose CM, Ge P, McNeil SM, Srinidhi J, Anderson MA, Jenkins B, Barnes GT, Duyao MP, Kanaley L et al. (1995) Normal and expanded Huntington's disease gene alleles produce distinguishable proteins due to translation across the CAG repeat. Mol Med 1, 374383.
  • 4
    Duyao MP, Auerbach AB, Ryan A, Persichetti F, Barnes GT, McNeil SM, Ge P, Vonsattel JP, Gusella JF, Joyner AL et al. (1995) Inactivation of the mouse Huntington's disease gene homolog Hdh. Science 269, 407410.
  • 5
    Nasir J, Floresco SB, O'Kusky JR, Diewert VM, Richman JM, Zeisler J, Borowski A, Marth JD, Phillips AG & Hayden MR (1995) Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81, 811823.
  • 6
    Zeitlin S, Liu JP, Chapman DL, Papaioannou VE & Efstratiadis A (1995) Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Nat Genet 11, 155163.
  • 7
    Dragatsis I, Levine MS & Zeitlin S (2000) Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat Genet 26, 300306.
  • 8
    Cattaneo E, Zuccato C & Tartari M (2005) Normal huntingtin function: an alternative approach to Huntington's disease. Nat Rev Neurosci 6, 919930.
  • 9
    Gray M, Shirasaki DI, Cepeda C, Andre VM, Wilburn B, Lu XH, Tao J, Yamazaki I, Li SH, Sun YE et al. (2008) Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J Neurosci 28, 61826195.
  • 10
    Hodgson JG, Smith DJ, McCutcheon K, Koide HB, Nishiyama K, Dinulos MB, Stevens ME, Bissada N, Nasir J, Kanazawa I et al. (1996) Human huntingtin derived from YAC transgenes compensates for loss of murine huntingtin by rescue of the embryonic lethal phenotype. Hum Mol Genet 5, 18751885.
  • 11
    White JK, Auerbach W, Duyao MP, Vonsattel JP, Gusella JF, Joyner AL & MacDonald ME (1997) Huntingtin is required for neurogenesis and is not impaired by the Huntington's disease CAG expansion. Nat Genet 17, 404410.
  • 12
    Jacobsen JC, Gregory GC, Woda JM, Thompson MN, Coser KR, Murthy V, Kohane IS, Gusella JF, Seong IS, MacDonald ME et al. (2011) HD CAG-correlated gene expression changes support a simple dominant gain of function. Hum Mol Genet 20, 28462860.
  • 13
    Yang XW & Gray M (2011) Mouse models for validating preclinical candidates for Huntington's disease. In Neurobiology of Huntington's Disease: Applications to Drug Discovery (Lo DC & Hughes RE, eds), chapter 7. CRC Press, Boca Raton, FL.
  • 14
    Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW et al. (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493506.
  • 15
    Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L & Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537548.
  • 16
    DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP & Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 19901993.
  • 17
    Schilling G, Becher MW, Sharp AH, Jinnah HA, Duan K, Kotzuk JA, Slunt HH, Ratovitski T, Cooper JK, Jenkins NA et al. (1999) Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N–terminal fragment of huntingtin. Hum Mol Genet 8, 397407.
  • 18
    Gardian G, Browne SE, Choi DK, Klivenyi P, Gregorio J, Kubilus JK, Ryu H, Langley B, Ratan RR, Ferrante RJ et al. (2005) Neuroprotective effects of phenylbutyrate in the N171–82Q transgenic mouse model of Huntington's disease. J Biol Chem 280, 556563.
  • 19
    Turmaine M, Raza A, Mahal A, Mangiarini L, Bates GP & Davies SW (2000) Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington's disease. Proc Natl Acad Sci USA 97, 80938097.
  • 20
    Yu ZX, Li SH, Evans J, Pillarisetti A, Li H & Li XJ (2003) Mutant huntingtin causes context-dependent neurodegeneration in mice with Huntington's disease. J Neurosci 23, 21932202.
  • 21
    Heng MY, Detloff PJ & Albin RL (2008) Rodent genetic models of Huntington disease. Neurobiol Dis 32, 19.
  • 22
    Wheeler VC, Auerbach W, White JK, Srinidhi J, Auerbach A, Ryan A, Duyao MP, Vrbanac V, Weaver M, Gusella JF et al. (1999) Length-dependent gametic CAG repeat instability in the Huntington's disease knock-in mouse. Hum Mol Genet 8, 115122.
  • 23
    Menalled LB, Sison JD, Dragatsis I, Zeitlin S & Chesselet MF (2003) Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington's disease with 140 CAG repeats. J Comp Neurol 465, 1126.
  • 24
    Lin CH, Tallaksen-Greene S, Chien WM, Cearley JA, Jackson WS, Crouse AB, Ren S, Li XJ, Albin RL & Detloff PJ (2001) Neurological abnormalities in a knock-in mouse model of Huntington's disease. Hum Mol Genet 10, 137144.
  • 25
    Heng MY, Tallaksen-Greene SJ, Detloff PJ & Albin RL (2007) Longitudinal evaluation of the Hdh(CAG)150 knock-in murine model of Huntington's disease. J Neurosci 27, 89898998.
  • 26
    Woodman B, Butler R, Landles C, Lupton MK, Tse J, Hockly E, Moffitt H, Sathasivam K & Bates GP (2007) The Hdh(Q150/Q150) knock-in mouse model of HD and the R6/2 exon 1 model develop comparable and widespread molecular phenotypes. Brain Res Bull 72, 8397.
  • 27
    Heikkinen T, Lehtimaki K, Vartiainen N, Puolivali J, Hendricks SJ, Glaser JR, Bradaia A, Wadel K, Touller C, Kontkanen O et al. (2012) Characterization of neurophysiological and behavioral changes, MRI brain volumetry and 1H MRS in zQ175 knock-in mouse model of Huntington's disease. PLoS One 7, e50717.
  • 28
    Menalled LB, Kudwa AE, Miller S, Fitzpatrick J, Watson-Johnson J, Keating N, Ruiz M, Mushlin R, Alosio W, McConnell K et al. (2012) Comprehensive behavioral and molecular characterization of a new knock-in mouse model of Huntington's disease: zQ175. PLoS One 7, e49838.
  • 29
    Gusella JF & Macdonald M (2007) Genetic criteria for Huntington's disease pathogenesis. Brain Res Bull 72, 7882.
  • 30
    Ehrnhoefer DE, Sutton L & Hayden MR (2011) Small changes, big impact: posttranslational modifications and function of huntingtin in Huntington disease. Neuroscientist 17, 475492.
  • 31
    Wheeler VC, White JK, Gutekunst CA, Vrbanac V, Weaver M, Li XJ, Li SH, Yi H, Vonsattel JP, Gusella JF et al. (2000) Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in HdhQ92 and HdhQ111 knock-in mice. Hum Mol Genet 9, 503513.
  • 32
    Figiel M, Szlachcic WJ, Switonski PM, Gabka A & Krzyzosiak WJ (2012) Mouse models of polyglutamine diseases: review and data table. Part I. Mol Neurobiol 46, 393429.
  • 33
    Hickey MA, Kosmalska A, Enayati J, Cohen R, Zeitlin S, Levine MS & Chesselet MF (2008) Extensive early motor and non-motor behavioral deficits are followed by striatal neuronal loss in knock-in Huntington's disease mice. Neuroscience 157, 280295.
  • 34
    Menalled L, El-Khodor BF, Patry M, Suarez-Farinas M, Orenstein SJ, Zahasky B, Leahy C, Wheeler V, Yang XW & MacDonald M, et al. (2009) Systematic behavioral evaluation of Huntington's disease transgenic and knock-in mouse models. Neurobiol Dis 35, 319336.
  • 35
    Menalled LB & Chesselet MF (2002) Mouse models of Huntington's disease. Trends Pharmacol Sci 23, 3239.
  • 36
    Hodgson JG, Agopyan N, Gutekunst CA, Leavitt BR, LePiane F, Singaraja R, Smith DJ, Bissada N, McCutcheon K, Nasir J et al. (1999) A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23, 181192.
  • 37
    Slow EJ, van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng Y, Oh R, Bissada N, Hossain SM, Yang YZ et al. (2003) Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet 12, 15551567.
  • 38
    Van Raamsdonk JM, Murphy Z, Slow EJ, Leavitt BR & Hayden MR (2005) Selective degeneration and nuclear localization of mutant huntingtin in the YAC128 mouse model of Huntington disease. Hum Mol Genet 14, 38233835.
  • 39
    Pouladi MA, Stanek LM, Xie Y, Franciosi S, Southwell AL, Deng Y, Butland S, Zhang W, Cheng SH, Shihabuddin LS et al. (2012) Marked differences in neurochemistry and aggregates despite similar behavioural and neuropathological features of Huntington disease in the full-length BACHD and YAC128 mice. Hum Mol Genet 21, 22192232.
  • 40
    Bates GP & Hockly E (2003) Experimental therapeutics in Huntington's disease: are models useful for therapeutic trials? Curr Opin Neurol 16, 465470.
  • 41
    Pouladi MA, Xie Y, Skotte NH, Ehrnhoefer DE, Graham RK, Kim JE, Bissada N, Yang XW, Paganetti P, Friedlander RM et al. (2010) Full-length huntingtin levels modulate body weight by influencing insulin-like growth factor 1 expression. Hum Mol Genet 19, 15281538.
  • 42
    Hult S, Soylu R, Bjorklund T, Belgardt BF, Mauer J, Bruning JC, Kirik D & Petersen A (2011) Mutant huntingtin causes metabolic imbalance by disruption of hypothalamic neurocircuits. Cell Metab 13, 428439.
  • 43
    Van Raamsdonk JM, Murphy Z, Selva DM, Hamidizadeh R, Pearson J, Petersen A, Bjorkqvist M, Muir C, Mackenzie IR, Hammond GL et al. (2007) Testicular degeneration in Huntington disease. Neurobiol Dis 26, 512520.
  • 44
    Jiang M, Wang J, Fu J, Du L, Jeong H, West T, Xiang L, Peng Q, Hou Z, Cai H et al. (2012) Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets. Nat Med 18, 153158.
  • 45
    Mazarei G, Neal SJ, Becanovic K, Luthi-Carter R, Simpson EM & Leavitt BR (2010) Expression analysis of novel striatal-enriched genes in Huntington disease. Hum Mol Genet 19, 609622.
  • 46
    Gu X, Andre VM, Cepeda C, Li SH, Li XJ, Levine MS & Yang XW (2007) Pathological cell–cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington's disease. Mol Neurodegener 2, 8.
  • 47
    Gu X, Li C, Wei W, Lo V, Gong S, Li SH, Iwasato T, Itohara S, Li XJ, Mody I et al. (2005) Pathological cell–cell interactions elicited by a neuropathogenic form of mutant Huntingtin contribute to cortical pathogenesis in HD mice. Neuron 46, 433444.
  • 48
    Brown TB, Bogush AI & Ehrlich ME (2008) Neocortical expression of mutant huntingtin is not required for alterations in striatal gene expression or motor dysfunction in a transgenic mouse. Hum Mol Genet 17, 30953104.
  • 49
    Thomas EA, Coppola G, Tang B, Kuhn A, Kim S, Geschwind DH, Brown TB, Luthi-Carter R & Ehrlich ME (2011) In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons. Hum Mol Genet 20, 10491060.
  • 50
    Moller T (2010) Neuroinflammation in Huntington's disease. J Neural Transm 117, 10011008.
  • 51
    Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED & Richardson EP Jr (1985) Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol 44, 559577.
  • 52
    Dalrymple A, Wild EJ, Joubert R, Sathasivam K, Bjorkqvist M, Petersen A, Jackson GS, Isaacs JD, Kristiansen M, Bates GP et al. (2007) Proteomic profiling of plasma in Huntington's disease reveals neuroinflammatory activation and biomarker candidates. J Proteome Res 6, 28332840.
  • 53
    Bjorkqvist M, Wild EJ & Tabrizi SJ (2009) Harnessing immune alterations in neurodegenerative diseases. Neuron 64, 2124.
  • 54
    Glass CK, Saijo K, Winner B, Marchetto MC & Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918934.
  • 55
    Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G & Cleveland DW (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312, 13891392.
  • 56
    Ilieva H, Polymenidou M & Cleveland DW (2009) Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 187, 761772.
  • 57
    Yamanaka K, Chun SJ, Boillee S, Fujimori-Tonou N, Yamashita H, Gutmann DH, Takahashi R, Misawa H & Cleveland DW (2008) Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci 11, 251253.
  • 58
    Bradford J, Shin JY, Roberts M, Wang CE, Li XJ & Li S (2009) Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci USA 106, 2248022485.
  • 59
    Bradford J, Shin JY, Roberts M, Wang CE, Sheng G, Li S & Li XJ (2010) Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice. J Biol Chem 285, 1065310661.
  • 60
    Zoghbi HY & Warren ST (2010) Neurogenetics: advancing the ‘next-generation’ of brain research. Neuron 68, 165173.
  • 61
    Culver BP, Savas JN, Park SK, Choi JH, Zheng S, Zeitlin SO, Yates JR III & Tanese N (2012) Proteomic analysis of wild-type and mutant huntingtin-associated proteins in mouse brains identifies unique interactions and involvement in protein synthesis. J Biol Chem 287, 2159921614.
  • 62
    Shirasaki DI, Greiner ER, Al-Ramahi I, Gray M, Boontheung P, Geschwind DH, Botas J, Coppola G, Horvath S & Loo JA, et al. (2012) Network organization of the huntingtin proteomic interactome in mammalian brain. Neuron 75, 4157.
  • 63
    Li H, Li SH, Yu ZX, Shelbourne P & Li XJ (2001) Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. J Neurosci 21, 84738481.
  • 64
    Li H, Li SH, Cheng AL, Mangiarini L, Bates GP & Li XJ (1999) Ultrastructural localization and progressive formation of neuropil aggregates in Huntington's disease transgenic mice. Hum Mol Genet 8, 12271236.
  • 65
    Landles C, Sathasivam K, Weiss A, Woodman B, Moffitt H, Finkbeiner S, Sun B, Gafni J, Ellerby LM, Trottier Y et al. (2010) Proteolysis of mutant huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal nuclei in Huntington disease. J Biol Chem 285, 88088823.
  • 66
    Kim YJ, Yi Y, Sapp E, Wang Y, Cuiffo B, Kegel KB, Qin ZH, Aronin N & DiFiglia M (2001) Caspase 3-cleaved N–terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington's disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc Natl Acad Sci USA 98, 1278412789.
  • 67
    Wellington CL, Singaraja R, Ellerby L, Savill J, Roy S, Leavitt B, Cattaneo E, Hackam A, Sharp A, Thornberry N et al. (2000) Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. J Biol Chem 275, 1983119838.
  • 68
    Gafni J, Hermel E, Young JE, Wellington CL, Hayden MR & Ellerby LM (2004) Inhibition of calpain cleavage of huntingtin reduces toxicity: accumulation of calpain/caspase fragments in the nucleus. J Biol Chem 279, 2021120220.
  • 69
    Miller JP, Holcomb J, Al-Ramahi I, de Haro M, Gafni J, Zhang N, Kim E, Sanhueza M, Torcassi C & Kwak S, et al. (2010) Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington's disease. Neuron 67, 199212.
  • 70
    Lunkes A, Lindenberg KS, Ben-Haiem L, Weber C, Devys D, Landwehrmeyer GB, Mandel JL & Trottier Y (2002) Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions. Mol Cell 10, 259269.
  • 71
    Sathasivam K, Neueder A, Gipson TA, Landles C, Benjamin AC, Bondulich MK, Smith DL, Faull RL, Roos RA, Howland D et al. (2013) Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc Natl Acad Sci USA 110, 23662370.
  • 72
    Warby SC, Doty CN, Graham RK, Carroll JB, Yang YZ, Singaraja RR, Overall CM & Hayden MR (2008) Activated caspase–6 and caspase–6-cleaved fragments of huntingtin specifically colocalize in the nucleus. Hum Mol Genet 17, 23902404.
  • 73
    Graham RK, Deng Y, Slow EJ, Haigh B, Bissada N, Lu G, Pearson J, Shehadeh J, Bertram L, Murphy Z et al. (2006) Cleavage at the caspase–6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 125, 11791191.
  • 74
    Graham RK, Deng Y, Carroll J, Vaid K, Cowan C, Pouladi MA, Metzler M, Bissada N, Wang L, Faull RL et al. (2010) Cleavage at the 586 amino acid caspase–6 site in mutant huntingtin influences caspase–6 activation in vivo. J Neurosci 30, 1501915029.
  • 75
    Tebbenkamp AT, Crosby KW, Siemienski ZB, Brown HH, Golde TE & Borchelt DR (2012) Analysis of proteolytic processes and enzymatic activities in the generation of huntingtin N–terminal fragments in an HEK293 cell model. PLoS One 7, e50750.
  • 76
    Waldron-Roby E, Ratovitski T, Wang X, Jiang M, Watkin E, Arbez N, Graham RK, Hayden MR, Hou Z, Mori S et al. (2012) Transgenic mouse model expressing the caspase 6 fragment of mutant huntingtin. J Neurosci 32, 183193.
  • 77
    Gafni J, Papanikolaou T, Degiacomo F, Holcomb J, Chen S, Menalled L, Kudwa A, Fitzpatrick J, Miller S, Ramboz S et al. (2012) Caspase–6 activity in a BACHD mouse modulates steady-state levels of mutant huntingtin protein but is not necessary for production of a 586 amino acid proteolytic fragment. J Neurosci 32, 74547465.
  • 78
    Landles C, Weiss A, Franklin S, Howland D & Bates G (2012) Caspase–6 does not contribute to the proteolysis of mutant huntingtin in the HdhQ150 knock-in mouse model of Huntington's disease. PLoS Curr 4, e4fd085bfc9973.
  • 79
    La Spada AR & Taylor JP (2010) Repeat expansion disease: progress and puzzles in disease pathogenesis. Nat Rev Genet 11, 247258.
  • 80
    Nelson DL, Orr HT & Warren ST (2013) The unstable repeats – three evolving faces of neurological disease. Neuron 77, 825843.
  • 81
    Jeong H, Then F, Melia TJ Jr, Mazzulli JR, Cui L, Savas JN, Voisine C, Paganetti P, Tanese N, Hart AC et al. (2009) Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell 137, 6072.
  • 82
    Greiner ER & Yang XW (2011) Huntington's disease: flipping a switch on huntingtin. Nat Chem Biol 7, 412414.
  • 83
    Tartari M, Gissi C, Lo Sardo V, Zuccato C, Picardi E, Pesole G & Cattaneo E (2008) Phylogenetic comparison of huntingtin homologues reveals the appearance of a primitive polyQ in sea urchin. Mol Biol Evol 25, 330338.
  • 84
    Atwal RS, Xia J, Pinchev D, Taylor J, Epand RM & Truant R (2007) Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Hum Mol Genet 16, 26002615.
  • 85
    Kim MW, Chelliah Y, Kim SW, Otwinowski Z & Bezprozvanny I (2009) Secondary structure of Huntingtin amino-terminal region. Structure 17, 12051212.
  • 86
    Tam S, Spiess C, Auyeung W, Joachimiak L, Chen B, Poirier MA & Frydman J (2009) The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation. Nat Struct Mol Biol 16, 12791285.
  • 87
    Thakur AK, Jayaraman M, Mishra R, Thakur M, Chellgren VM, Byeon IJ, Anjum DH, Kodali R, Creamer TP, Conway JF et al. (2009) Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat Struct Mol Biol 16, 380389.
  • 88
    Rockabrand E, Slepko N, Pantalone A, Nukala VN, Kazantsev A, Marsh JL, Sullivan PG, Steffan JS, Sensi SL & Thompson LM (2007) The first 17 amino acids of Huntingtin modulate its sub-cellular localization, aggregation and effects on calcium homeostasis. Hum Mol Genet 16, 6177.
  • 89
    Zheng Z, Li A, Holmes BB, Marasa JC & Diamond MI (2013) An N–terminal nuclear export signal regulates trafficking and aggregation of Huntingtin (Htt) protein exon 1. J Biol Chem 288, 60636071.
  • 90
    Maiuri T, Woloshansky T, Xia J & Truant R (2013) The huntingtin N17 domain is a multifunctional CRM1 and Ran-dependent nuclear and cilial export signal. Hum Mol Genet 22, 13831394.
  • 91
    Omi K, Hachiya NS, Tanaka M, Tokunaga K & Kaneko K (2008) 14–3–3ζ is indispensable for aggregate formation of polyglutamine-expanded huntingtin protein. Neurosci Lett 431, 4550.
  • 92
    Wang Y, Meriin AB, Zaarur N, Romanova NV, Chernoff YO, Costello CE & Sherman MY (2009) Abnormal proteins can form aggresome in yeast: aggresome-targeting signals and components of the machinery. FASEB J 23, 451463.
  • 93
    Cornett J, Cao F, Wang CE, Ross CA, Bates GP, Li SH & Li XJ (2005) Polyglutamine expansion of huntingtin impairs its nuclear export. Nat Genet 37, 198204.
  • 94
    Atwal RS, Desmond CR, Caron N, Maiuri T, Xia J, Sipione S & Truant R (2011) Kinase inhibitors modulate huntingtin cell localization and toxicity. Nat Chem Biol 7, 453460.
  • 95
    Mitomi Y, Nomura T, Kurosawa M, Nukina N & Furukawa Y (2012) Post-aggregation oxidation of mutant huntingtin controls the interactions between aggregates. J Biol Chem 287, 3476434775.
  • 96
    Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N, Illes K, Lukacsovich T, Zhu YZ, Cattaneo E et al. (2004) SUMO modification of Huntingtin and Huntington's disease pathology. Science 304, 100104.
  • 97
    Thompson LM, Aiken CT, Kaltenbach LS, Agrawal N, Illes K, Khoshnan A, Martinez-Vincente M, Arrasate M, O'Rourke JG, Khashwji H et al. (2009) IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. J Cell Biol 187, 10831099.
  • 98
    Gu X, Greiner ER, Mishra R, Kodali R, Osmand A, Finkbeiner S, Steffan JS, Thompson LM, Wetzel R & Yang XW (2009) Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice. Neuron 64, 828840.
  • 99
    Mishra R, Hoop CL, Kodali R, Sahoo B, van der Wel PC & Wetzel R (2012) Serine phosphorylation suppresses huntingtin amyloid accumulation by altering protein aggregation properties. J Mol Biol 424, 114.
  • 100
    Di Pardo A, Maglione V, Alpaugh M, Horkey M, Atwal RS, Sassone J, Ciammola A, Steffan JS, Fouad K, Truant R et al. (2012) Ganglioside GM1 induces phosphorylation of mutant huntingtin and restores normal motor behavior in Huntington disease mice. Proc Natl Acad Sci USA 109, 35283533.