SEARCH

SEARCH BY CITATION

References

  • 1
    Stetter KO (1999) Extremophiles and their adaptation to hot environments. FEBS Lett 452, 2225.
  • 2
    Daniel RM & Cowan DA (2000) Biomolecular stability and life at high temperatures. Cell Mol Life Sci 57, 250264.
  • 3
    Kawashima T, Amano N, Koike H, Makino SI, Higuchi S, Kawashima-Ohya Y, Watanabe K, Yamazaki M, Kanehori K, Kawamoto T et al. (2000) Archaeal adaptation to higher temperatures revealed by genomic sequence of Thermoplasma volcanium. Proc Natl Acad Sci USA 97, 1425714262.
  • 4
    Kouril T, Kolodkin A, Zaparty M, Steuer R, Ruoff P, Westerhoff HV, Snoep JL, Siebers B & consortium, SulfoSYS (2012) Sulfolobus Systems Biology: Cool Hot Design for Metabolic Pathways. Horizon Scientific Press and Caister Academic Press, Norwich.
  • 5
    Imanaka T & Atomi H (2002) Catalyzing ‘hot’ reactions: enzymes from hyperthermophilic archaea. Chem Rec 2, 149163.
  • 6
    Schramm A, Kohlhoff M & Hensel R (2001) Triose-phosphate isomerase from Pyrococcus woesei and Methanothermus fervidus. Meth Enzymol 331, 6277.
  • 7
    Ahmed H, Ettema TJG, Tjaden B, Geerling ACM, Van Der Oost J & Siebers B (2005) The semi-phosphorylative Entner–Doudoroff pathway in hyperthermophilic archaea: a re-evaluation. Biochem J 390, 529540.
  • 8
    Brunner NA, Brinkmann H, Siebers B & Hensel R (1998) NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase from Thermoproteus tenax. J Biol Chem 273, 61496156.
  • 9
    Brunner NA, Siebers B & Hensel R (2001) Role of two different glyceraldehyde-3-phosphate dehydrogenases in controlling the reversible Embden–Meyerhof–Parnas pathway in Thermoproteus tenax: regulation on protein and transcript level. Extremophiles 5, 101109.
  • 10
    Lorentzen E, Hensel R, Knura T, Ahmed H & Pohl E (2004) Structural basis of allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde 3-phosphate dehydrogenase from Thermoproteus tenax. J Mol Biol 341, 815828.
  • 11
    Ettema TJG, Ahmed H, Geerling ACM, Van Der Oost J & Siebers B (2008) The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (gapn) of Sulfolobus solfataricus: a key-enzyme of the semi-phosphorylative branch of the Entner–Doudoroff pathway. Extremophiles 12, 7588.
  • 12
    Zaparty M, Zaigler A, Stamme C, Soppa J, Hensel R & Siebers B (2008) DNA microarray analysis of the central carbohydrate metabolism: glycolytic/gluconeogenic carbon switch in the hyperthermophilic crenarchaeum Thermoproteus tenax. J Bacteriol 190, 22312238.
  • 13
    Say RF & Fuchs G (2010) Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme. Nature 464, 10771081.
  • 14
    Matsubara K, Yokooji Y, Atomi H & Imanaka T (2011) Biochemical and genetic characterization of the three metabolic routes in Thermococcus kodakarensis linking glyceraldehyde 3-phosphate and 3-phosphoglycerate. Mol Microbiol 81, 13001312.
  • 15
    Zillig W, Stetter KO & Wunderl S (1980) The Sulfolobus-'Caldariella' group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125, 259269.
  • 16
    Albers SV, Birkeland NK, Driessen AJM, Gertig S, Haferkamp P, Klenk HP, Kouril T, Manica A, Pham TK, Ruoff P et al. (2009) Sulfosys (sulfolobus systems biology): towards a silicon cell model for the central carbohydrate metabolism of the archaeon Sulfolobus solfataricus under temperature variation. Biochem Soc Trans 37, 5864.
  • 17
    Lamble HJ, Heyer NI, Bull SD, Hough DW & Danson MJ (2003) Metabolic pathway promiscuity in the archaeon Sulfolobus solfataricus revealed by studies on glucose dehydrogenase and 2-keto-3-deoxygluconate aldolase. J Biol Chem 278, 3406634072.
  • 18
    Lamble HJ, Theodossis A, Milburn CC, Taylor GL, Bull SD, Hough DW & Danson MJ (2005) Promiscuity in the part-phosphorylative Entner–Doudoroff pathway of the archaeon Sulfolobus solfataricus. FEBS Lett 579, 68656869.
  • 19
    Snijders APL, Walther J, Peter S, Kinnman I, De Vos MGJ, Van De Werken HJG, Brouns SJJ, Van Der Oost J & Wright PC (2006) Reconstruction of central carbon metabolism in Sulfolobus solfataricus using a two-dimensional gel electrophoresis map, stable isotope labelling and DNA microarray analysis. Proteomics 6, 15181529.
  • 20
    Van Der Oost J & Siebers B (2007) The Glycolytic Pathways of Archaea: Evolution by Tinkering. Vol. 1, pp. 247259. Blackwell Publishing, Singapore.
  • 21
    Zaparty M & Siebers B (2011) Reconstruction of the central carbon metabolic network of thermoacidophilic Archaea. In Physiology, Metabolism and Enzymology of Thermoacidophiles (Horikoshi K, ed). Vol. 1, pp. 602639. Springer, Tokyo.
  • 22
    Potters MB, Solow BT, Bischoff KM, Graham DE, Lower BH, Helm R & Kennelly PJ (2003) Phosphoprotein with phosphoglycerate mutase activity from the archaeon Sulfolobus solfataricus. J Bacteriol 185, 21122121.
  • 23
    Dello Russo A, Rullo R, Masullo M, Ianniciello G, Arcari P & Bocchini V (1995) Glyceraldehyde-3-phosphate dehydrogenase in the hyperthermophilic archaeon Sulfolobus solfataricus: characterization and significance in glucose metabolism. Biochem Mol Biol Int 36, 123135.
  • 24
    Hess D, Kruger K, Knappik A, Palm P & Hensel R (1995) Dimeric 3-phosphoglycerate kinases from hyperthermophilic archaea. Cloning, sequencing and expression of the 3-phosphoglycerate kinase gene of Pyrococcus woesei in Escherichia coli and characterization of the protein. Structural and functional comparison with the 3-phosphoglycerate kinase of Methanothermus fervidus. Eur J Biochem 233, 227237.
  • 25
    Jones CE, Fleming TM, Cowan DA, Littlechild JA & Piper PW (1995) The phosphoglycerate kinase and glyceraldehyde-3-phosphate dehydrogenase genes from the thermophilic archaeon Sulfolobus solfataricus overlap by 8 bp – isolation, sequencing of the genes and expression in Escherichia coli. Eur J Biochem 233, 800808.
  • 26
    Du J, Say RF, Lu W, Fuchs G & Einsle O (2011) Active-site remodelling in the bifunctional fructose-1,6-bisphosphate aldolase/phosphatase. Nature 478, 534537.
  • 27
    Fushinobu S, Nishimasu H, Hattori D, Song HJ & Wakagi T (2011) Structural basis for the bifunctionality of fructose-1,6-bisphosphate aldolase/phosphatase. Nature 478, 538541.
  • 28
    König H, Skorko R, Zillig W & Reiter WD (1982) Glycogen in thermoacidophilic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus and Thermococcus. Arch Microbiol 132, 297303.
  • 29
    Maruta K, Mitsuzumi H, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T & Kurimoto M (1996) Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim Biophys Acta (BBA) General Subjects 1291, 177181.
  • 30
    Park HS, Park JT, Kang HK, Cha H, Kim DS, Kim JW & Park KH (2007) TreX from Sulfolobus solfataricus ATCC 35092 displays isoamylase and 4-α-glucanotransferase activities. Biosci Biotechnol Biochem 71, 13481352.
  • 31
    Woo EJ, Lee S, Cha H, Park JT, Yoon SM, Song HN & Park KH (2008) Structural insight into the bifunctional mechanism of the glycogen-debranching enzyme TreX from the archaeon Sulfolobus solfataricus. J Biol Chem 283, 2864128648.
  • 32
    Hofmeyr JH & Cornish-Bowden A (1997) The reversible Hill equation: how to incorporate cooperative enzymes into metabolic models. Cabios 13, 377385.
  • 33
    Hanekom AJ (2006) Generic rate equations for modelling multisubstrate reactions in computational systems biology. Master's thesis, Stellenbosch University, South Africa.
  • 34
    Ito F, Chishiki H, Fushinobu S & Wakagi T (2012) Comparative analysis of two glyceraldehyde-3-phosphate dehydrogenases from a thermoacidophilic archaeon, Sulfolobus tokodaii. FEBS Lett 586, 30973103.
  • 35
    Siebers B, Tjaden B, Michalke K, Dörr C, Ahmed H, Zaparty M, Gordon P, Sensen CW, Zibat A & Klenk HP, et al. (2004) Reconstruction of the central carbohydrate metabolism of Thermoproteus tenax by use of genomic and biochemical data. J Bacteriol 186, 21792194.
  • 36
    Dörr C, Zaparty M, Tjaden B, Brinkmann H & Siebers B (2003) The hexokinase of the hyperthermophile Thermoproteus tenax: ATP-dependent hexokinases and ADP-dependent glucokinases, two alternatives for glucose phosphorylation in archaea. J Biol Chem 278, 1874418753.
  • 37
    Hansen T, Schlichting B & Schönheit P (2002) Glucose-6-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima: expression of the g6pd gene and characterization of an extremely thermophilic enzyme. FEMS Microbiol Lett 216, 249253.
  • 38
    Haferkamp P, Kutschki S, Treichel J, Hemeda H, Sewczyk K, Hoffmann D, Zaparty M & Siebers B (2011) An additional glucose dehydrogenase from Sulfolobus solfataricus: fine-tuning of sugar degradation? Biochem Soc Trans 39, 7781.
  • 39
    Haferkamp P (2011) Biochemical studies of enzymes involved in glycolysis of the thermoacidophilic crenarchaeon Sulfolobus solfataricus. PhD thesis, University of Duisburg-Essen, Germany.
  • 40
    Littlechild JA & Isupov M (2001) Glyceraldehyde-3-phosphate dehydrogenase from Sulfolobus solfataricus. In Methods in Enzymology, Vol. 331: Hyperthermophilic Enzymes, Part B (Michael WW & Adams RMK, eds), pp. 105117. Academic Press, San Diego, CA.
  • 41
    Wolfram Research Inc. (2010) Mathematica Edition: Version 8.0. Wolfram Research Inc., Champaign, IL.