• 1
    Michell RH (1986) Inositol lipids and their role in receptor function: history and general principles. In Phosphoinositides and Receptor Mechanisms (Putney JW Jr, ed.), pp. 124, Alan R Liss, New York.
  • 2
    Di Paolo G & De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651657.
  • 3
    McCrea HJ & De Camilli P (2009) Mutations in phosphoinositide metabolizing enzymes and human disease. Physiology (Bethesda) 24, 816.
  • 4
    Fujita M & Kinoshita T (2012) GPI-anchor remodeling: potential functions of GPI-anchors in intracellular trafficking and membrane dynamics. Biochim Biophys Acta 1821, 10501058.
  • 5
    Pata MO, Hannun YA & Ng CK (2010) Plant sphingolipids: decoding the enigma of the Sphinx. New Phytol 185, 611630.
  • 6
    Epstein S & Riezman H (2013) Sphingolipid signaling in yeast: potential implications for understanding disease. Front Biosci (Elite Ed) 5, 97108.
  • 7
    Mina JG, Pan SY, Wansadhipathi NK, Bruce CR, Shams-Eldin H, Schwarz RT, Steel PG & Denny PW (2009) The Trypanosoma brucei sphingolipid synthase, an essential enzyme and drug target. Mol Biochem Parasitol 168, 1623.
  • 8
    Botelho RJ (2009) Changing phosphoinositides ‘on the fly’: how trafficking vesicles avoid an identity crisis. BioEssays 31, 11271136.
  • 9
    Michell RH (2007) Evolution of the diverse biological roles of inositols. Biochem Soc Symp 74, 223246.
  • 10
    Michell RH (2008) Inositol derivatives: evolution and functions. Nat Rev Mol Cell Biol 9, 151161.
  • 11
    Michell RH (2011) Inositol and its derivatives: their evolution and functions. Adv Enzyme Regul 51, 8490.
  • 12
    Turner BL, Papházy MJ, Haygarth PM & McKelvie ID (2002) Inositol phosphates in the environment. Phil Trans R Soc Lond B Biol Sci 357, 449469.
  • 13
    Giles CC, Cade-Menun BJ & Hill JE (2011) The inositol phosphates in soils and manures: abundance, cycling, and measurement. Can J Soil Sci 91, 397416.
  • 14
    Turner BL, Cheesman AW, Godage HY, Riley AM & Potter BV (2012) Determination of neo- and D-chiro-inositol hexakisphosphate in soils by solution 31P NMR spectroscopy. Environ Sci Technol 46, 49945002.
  • 15
    Martin JB, Laussmann T, Bakker-Grunwald T, Vogel G & Klein G (2000) Neo-inositol polyphosphates in the amoeba Entamoeba histolytica. J Biol Chem 275, 1013410140.
  • 16
    Berridge MJ & Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315321.
  • 17
    Shears SB, Ganapathi SB, Gokhale NA, Schenk TM, Wang H, Weaver JD, Zaremba A & Zhou Y (2012) Defining signal transduction by inositol phosphates. Subcell Biochem 59, 389412.
  • 18
    Wilson MS, Livermore TM & Saiardi A (2013) Inositol pyrophosphates: between signalling and metabolism. Biochem J 452, 369379.
  • 19
    Katz LA (2012) Origin and diversification of eukaryotes. Annu Rev Microbiol 66, 411427.
  • 20
    Lombard J, López-García P & Moreira D (2012) The early evolution of lipid membranes and the three domains of life. Nat Rev Microbiol 10, 507515.
  • 21
    Nesbo CL, L'Haridon S, Stetter KO & Doolittle WF (2001) Phylogenetic analyses of two ‘archaeal’ genes in Thermotoga maritima reveal multiple transfers between archaea and bacteria. Mol Biol Evol 18, 362375.
  • 22
    Majumder AL, Chatterjee A, Ghosh Dastidar K & Majee M (2003) Diversification and evolution of L-myo-inositol 1-phosphate synthase. FEBS Lett 553, 310.
  • 23
    Cavicchioli R (2011) Archaea – timeline of the third domain. Nat Rev Microbiol 9, 5161.
  • 24
    Morii H & Koga Y (2003) CDP-2,3-Di-O-geranylgeranyl-sn-glycerol:L-serine O-archaetidyltransferase (archaetidylserine synthase) in the methanogenic archaeon Methanothermobacter thermautotrophicus. J Bacteriol 185, 11811189.
  • 25
    Koga Y (2011) Early evolution of membrane lipids: how did the lipid divide occur? J Mol Evol 72, 274282.
  • 26
    Yokoi T, Isobe K, Yoshimura T & Hemmi H (2012) Archaeal phospholipid biosynthetic pathway reconstructed in Escherichia coli. Archaea doi:10.1155/2012/438931.
  • 27
    Agranoff BW, Bradley RM & Brady RO (1958) The enzymatic synthesis of inositol phosphatide. J Biol Chem 233, 10771083.
  • 28
    Paulus H & Kennedy EP (1960) The enzymatic synthesis of inositol monophosphatide. J Biol Chem 235, 13031311.
  • 29
    Morii H, Kiyonari S, Ishino Y & Koga Y (2009) A novel biosynthetic pathway of archaetidyl-myo-inositol via archaetidyl-myo-inositol phosphate from CDP-archaeol and D-glucose 6-phosphate in methanoarchaeon Methanothermobacter thermautotrophicus cells. J Biol Chem 284, 3076630774.
  • 30
    Samson RY & Bell SD (2009) Ancient ESCRTs and the evolution of binary fission. Trends Microbiol 17, 507513.
  • 31
    Makarova KS, Yutin N, Bell SD & Koonin EV (2010) Evolution of diverse cell division and vesicle formation sytems in Archaea. Nat Rev Microbiol 8, 731741.
  • 32
    Jackson M, Crick DC & Brennan PJ (2000) Phosphatidylinositol is an essential phospholipid of mycobacteria. J Biol Chem 275, 3009230099.
  • 33
    Morii H, Ogawa M, Fukuda K, Taniguchi H & Koga Y (2010) A revised biosynthetic pathway for phosphatidylinositol in Mycobacteria. J Biochem 148, 593602.
  • 34
    Morii H, Okauchi T, Nomiya H, Ogawa M, Fukuda K & Taniguchi H (2013) Studies of inositol 1-phosphate analogues as inhibitors of the phosphatidylinositol phosphate synthase in mycobacteria. J Biochem 153, 257266.
  • 35
    Morita YS, Yamaryo-Botte Y, Miyanagi K, Callaghan JM, Patterson JH, Crellin PK, Coppel RL, Billman-Jacobe H, Kinoshita T & McConville MJ (2010) Stress-induced synthesis of phosphatidylinositol 3-phosphate in mycobacteria. J Biol Chem 285, 1664316650.
  • 36
    Morita YS, Fukuda T, Sena CB, Yamaryo-Botte Y, McConville MJ & Kinoshita T (2011) Inositol lipid metabolism in mycobacteria: biosynthesis and regulatory mechanisms. Biochim Biophys Acta 1810, 630641.
  • 37
    Reynolds TB (2009) Strategies for acquiring the phospholipid metabolite inositol in pathogenic bacteria, fungi and protozoa: making it and taking it. Microbiology 155, 13861396.
  • 38
    Movahedzadeh F, Smith DA, Norman RA, Dinadayala P, Murray-Rust J, Russell DG, Kendall SL, Rison SC, McAlister MS, Bancroft GJ et al. (2004) The Mycobacterium tuberculosis ino1 gene is essential for growth and virulence. Mol Microbiol 51, 10031014.
  • 39
    Li Y, Chen Z, Li X, Zhang H, Huang Q, Zhang Y & Xu S (2007) Inositol-1-phosphate synthetase mRNA as a new target for antisense inhibition of Mycobacterium tuberculosis. J Biotechnol 128, 726734.
  • 40
    Martin KL & Smith TK (2006) The glycosylphosphatidylinositol (GPI) biosynthetic pathway of bloodstream-form Trypanosoma brucei is dependent on the de novo synthesis of inositol. Mol Microbiol 61, 89105.
  • 41
    Martin KL & Smith TK (2006) Phosphatidylinositol synthesis is essential in bloodstream form Trypanosoma brucei. Biochem J 396, 287295.
  • 42
    Auger KR, Serunian LA, Soltoff SP, Libby P & Cantley LC (1989) PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell 57, 167175.
  • 43
    Whiteford CC, Brearley CA & Ulug ET (1997) Phosphatidylinositol 3,5-bisphosphate defines a novel PI 3-kinase pathway in resting mouse fibroblasts. Biochem J 323, 597601.
  • 44
    Dove SK, Cooke FT, Douglas MR, Sayers LG, Parker PJ & Michell RH (1997) Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis. Nature 390, 187192.
  • 45
    Sbrissa D & Shisheva A (2005) Acquisition of unprecedented phosphatidylinositol 3,5-bisphosphate rise in hyperosmotically stressed 3T3-L1 adipocytes, mediated by ArPIKfyve–PIKfyve pathway. J Biol Chem 280, 78837889.
  • 46
    Karali D, Oxley D, Runions J, Ktistakis N & Farmaki T (2012) The Arabidopsis thaliana immunophilin ROF1 directly interacts with PI(3)P and PI(3,5)P2 and affects germination under osmotic stress. PLoS ONE 7, e48241.
  • 47
    Efe JA, Botelho RJ & Emr SD (2005) The Fab1 phosphatidylinositol kinase pathway in the regulation of vacuole morphology. Curr Opin Cell Biol 17, 402408.
  • 48
    Michell RH, Heath VL, Lemmon MA & Dove SK (2006) Phosphatidylinositol 3,5-bisphosphate: metabolism and cellular functions. Trends Biochem Sci 31, 5263.
  • 49
    Dove SK, Dong K, Kobayashi T, Williams FK & Michell RH (2009) Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve under PPIn endo-lysosome function. Biochem J 419, 113.
  • 50
    Ho CY, Alghamdi TA & Botelho RJ (2012) Phosphatidylinositol-3,5-bisphosphate: no longer the poor PIP2. Traffic 13, 18.
  • 51
    Meléndez A, Tallóczy Z, Seaman M, Eskelinen EL, Hall DH & Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 13871391.
  • 52
    Proikas-Cezanne T, Waddell S, Gaugel A, Frickey T, Lupas A & Nordheim A (2004) WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene 23, 93149325.
  • 53
    Shimada Y & Klionsky DJ (2012) Autophagy contributes to lysosomal storage disorders. Autophagy 8, 715716.
  • 54
    Ikonomov OC, Sbrissa D, Delvecchio K, Xie Y, Jin JP, Rappolee D & Shisheva A (2011) The phosphoinositide kinase PIKfyve is vital in early embryonic development: preimplantation lethality of PIKfyve–/– embryos but normality of PIKfyve+/– mice. J Biol Chem 286, 1340413413.
  • 55
    Lenk GM, Ferguson CJ, Chow CY, Jin N, Jones JM, Grant AE, Zolov SN, Winters JJ, Giger RJ, Dowling JJ et al. (2011) Pathogenic mechanism of the FIG 4 mutation responsible for Charcot–Marie–Tooth disease CMT4J. PLoS Genet 17, e1002104.
  • 56
    Ferguson CJ, Lenk GM, Jones JM, Grant AE, Winters JJ, Dowling JJ, Giger RJ & Meisler MH (2012) Neuronal expression of Fig 4 is both necessary and sufficient to prevent spongiform neurodegeneration. Hum Mol Genet 21, 35253534.
  • 57
    Campeau PM, Lenk GM, Lu JT, Bae Y, Burrage L, Turnpenny P, Román Corona-Rivera J, Morandi L, Mora M, Reutter H et al. (2013) Yunis–Varón syndrome is caused by mutations in FIG 4, encoding a phosphoinositide phosphatase. Am J Hum Genet 92, 781791.
  • 58
    Takasuga T & Sasaki T (2013) Phosphatidylinositol 3,5-bisphosphate: metabolism and biological functions. J Biochem, in press.
  • 59
    Yamamoto A, DeWald DB, Boronenkov IV, Anderson RA, Emr SD & Koshland D (1995) Novel PI(4)P 5-kinase homologue, Fab1p, essential for normal vacuole function and morphology in yeast. Mol Biol Cell 6, 525539.
  • 60
    Cooke FT, Dove SK, McEwen RK, Painter G, Holmes AB, Hall MN, Michell RH & Parker PJ (1998) The stress-activated phosphatidylinositol 3-phosphate 5-kinase Fab1p is essential for vacuole function in S. cerevisiae. Curr Biol 8, 12191222.
  • 61
    Gary JD, Wurmser AE, Bonangelino CJ, Weisman LS & Emr SD (1998) Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. J Cell Biol 143, 6579.
  • 62
    McEwen RK, Dove SK, Cooke FT, Painter GF, Holmes AB, Shisheva A, Ohya Y, Parker PJ & Michell RH (1999) Complementation analysis in PtdInsP kinase-deficient yeast mutants demonstrates that Schizosaccharomyces pombe and murine Fab1p homologues are phosphatidylinositol 3-phosphate 5-kinases. J Biol Chem 274, 3390533912.
  • 63
    Sbrissa D, Ikonomov OC & Shisheva A (1999) PIKfyve, a mammalian ortholog of yeast Fab1p lipid kinase, synthesizes 5-phosphoinositides: effect of insulin. J Biol Chem 274, 2158921597.
  • 64
    Shisheva A (2001) PIKfyve: the road to PtdIns 5-P and PtdIns 3,5-P(2). Cell Biol Int 25, 12011206.
  • 65
    Ikonomov OC, Sbrissa D, Mlak K, Kanzaki M, Pessin J & Shisheva A (2002) Functional dissection of lipid and protein kinase signals of PIKfyve reveals the role of PtdIns 3,5-P2 production for endomembrane integrity. J Biol Chem 277, 92069211.
  • 66
    Lecompte O, Poch O & Laporte J (2008) PtdIns5P regulation through evolution: roles in membrane trafficking? Trends Biochem Sci 33, 453460.
  • 67
    Sbrissa D, Ikonomov OC, Filios C, Delvecchio K & Shisheva A (2012) Functional dissociation between PIKfyve-synthesized PtdIns5P and PtdIns(3,5)P2 by means of the PIKfyve inhibitor YM201636. Am J Physiol Cell Physiol 303, C436C446.
  • 68
    Zolov SN, Bridges D, Zhang Y, Lee WW, Riehle E, Verma R, Lenk GM, Converso-Baran K, Weide T, Albin RL et al. (2012) In vivo, Pikfyve generates PI(3,5)P2, which serves as both a signaling lipid and the major precursor for PI5P. Proc Natl Acad Sci USA 109, 1747217477.
  • 69
    Oppelt A, Lobert VH, Haglund K, Mackey AM, Rameh LE, Liestøl K, Schink KO, Pedersen NM, Wenzel EM, Haugsten EM et al. (2013) Production of phosphatidylinositol 5-phosphate via PIKfyve and MTMR3 regulates cell migration. EMBO Rep 14, 5764.
  • 70
    Jones DR, Foulger R, Keune WJ, Bultsma Y & Divecha N (2013) PtdIns5P is an oxidative stress-induced second messenger that regulates PKB activation. FASEB J 27, 16441656.
  • 71
    Cooke FT (2002) Phosphatidylinositol 3,5-bisphosphate: metabolism and function. Arch Biochem Biophys 407, 143151.
  • 72
    Dove SK, McEwen RK, Mayes A, Hughes DC, Beggs JD & Michell RH (2002) Vac14 controls PtdIns(3,5)P(2) synthesis and Fab1-dependent protein trafficking to the multivesicular body. Curr Biol 12, 885893.
  • 73
    Bonangelino CJ, Nau JJ, Duex JE, Brinkman M, Wurmser AE, Gary JD, Emr SD & Weisman LS (2002) Osmotic stress-induced increase of phosphatidylinositol 3,5-bisphosphate requires Vac14p, an activator of the lipid kinase Fab1p. J Cell Biol 156, 10151028.
  • 74
    Gary JD, Sato TK, Stefan CJ, Bonangelino CJ, Weisman LS & Emr SD (2002) Regulation of Fab1 phosphatidylinositol 3-phosphate 5-kinase pathway by Vac7 protein and Fig 4, a polyphosphoinositide phosphatase family member. Mol Biol Cell 13, 12381251.
  • 75
    Jin N, Chow CY, Liu L, Zolov SN, Bronson R, Davisson M, Petersen JL, Zhang Y, Park S, Duex JE et al. (2008) VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P(2) in yeast and mouse. EMBO J 27, 32213234.
  • 76
    Sbrissa D, Ikonomov OC, Fenner H & Shisheva A (2008) ArPIKfyve homomeric and heteromeric interactions scaffold PIKfyve and Sac3 in a complex to promote PIKfyve activity and functionality. J Mol Biol 384, 766779.
  • 77
    Alghamdi TA, Ho CY, Mrakovic A, Taylor D, Mao D & Botelho RJ (2013) Vac14 protein multimerization is a prerequisite step for Fab1 protein complex assembly and function. J Biol Chem 288, 93639372.
  • 78
    Botelho RJ, Efe JA, Teis D & Emr SD (2008) Assembly of a Fab1 phosphoinositide kinase signaling complex requires the Fig 4 phosphoinositide phosphatase. Mol Biol Cell 19, 42734286.
  • 79
    Dove SK, Piper RC, McEwen RK, Yu JW, King MC, Hughes DC, Thuring J, Holmes AB, Cooke FT, Michell RH et al. (2004) Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO J 23, 19221933.
  • 80
    Jefferies HB, Cooke FT, Jat P, Boucheron C, Koizumi T, Hayakawa M, Kaizawa H, Ohishi T, Workman P, Waterfield MD et al. (2008) A selective PIKfyve inhibitor blocks PtdIns(3,5)P(2) production and disrupts endomembrane transport and retroviral budding. EMBO Rep 9, 164170.
  • 81
    Baskaran S, Ragusa MJ, Boura E & Hurley JH (2012) Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy. Mol Cell 437, 339348.
  • 82
    Watanabe Y, Kobayashi T, Yamamoto H, Hoshida H, Akada R, Inagaki F, Ohsumi Y & Noda NN (2012) Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18. J Biol Chem 287, 3168131690.
  • 83
    Krick R, Busse RA, Scacioc A, Stephan M, Janshoff A, Thumm M & Kühnel K (2012) Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a β-propeller protein family. Proc Natl Acad Sci USA 109, E2042E2049.
  • 84
    Krick R, Henke S, Tolstrup J & Thumm M (2008) Dissecting the localization and function of Atg18, Atg21 and Ygr223c. Autophagy 4, 896910.
  • 85
    Rieter E, Vinke F, Bakula D, Cebollero E, Ungermann C, Proikas-Cezanne T & Reggiori F (2013) Atg18 function in autophagy is regulated by specific sites within its β-propeller. J Cell Sci 126, 593604.
  • 86
    Ho H, Kapadia R, Al-Tahan S, Ahmad S & Ganesan AK (2011) WIPI1 coordinates melanogenic gene transcription and melanosome formation via TORC1 inhibition. J Biol Chem 286, 1250912523.
  • 87
    Sitaram A & Marks MS (2012) Mechanisms of protein delivery to melanosomes in pigment cells. Physiology (Bethesda) 27, 8599.
  • 88
    Bak G, Lee EJ, Lee Y, Kato M, Segami S, Sze H, Maeshima M, Hwang JU & Lee Y (2013) Rapid structural changes and acidification of guard cell vacuoles during stomatal closure require phosphati-dylinositol 3,5-bisphosphate. Plant Cell 25, 22062216.
  • 89
    Dong XP, Shen D, Wang X, Dawson T, Li X, Zhang Q, Cheng X, Zhang Y, Weisman LS, Delling M et al. (2010) PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca(2+) release channels in the endolysosome. Nat Commun 1, doi:10.1038/ncomms1037.
  • 90
    Grimm C, Hassan S, Wahl-Schott C & Biel M (2012) Role of TRPML and two-pore channels in endolysosomal cation homeostasis. J Pharmacol Exp Ther 342, 236244.
  • 91
    Wang X, Zhang X, Dong XP, Samie M, Li X, Cheng X, Goschka A, Shen D, Zhou Y, Harlow J et al. (2012) TPC proteins are phosphoinositide-activated sodium-selective ion channels in endosomes and lysosomes. Cell 151, 372383.
  • 92
    Sbrissa D, Ikonomov OC, Strakova J & Shisheva A (2004) Role for a novel signaling intermediate, phosphatidylinositol 5-phosphate, in insulin-regulated F-actin stress fiber breakdown and GLUT4 translocation. Endocrinology 145, 48534865.
  • 93
    Berwick DC, Dell GC, Welsh GI, Heesom KJ, Hers I, Fletcher LM, Cooke FT & Tavaré JM (2004) Protein kinase B phosphorylation of PIKfyve regulates the trafficking of GLUT4 vesicles. J Cell Sci 117, 59855993.
  • 94
    Ikonomov OC, Sbrissa D, Delvecchio K, Feng HZ, Cartee GD, Jin JP & Shisheva A (2013) Muscle-specific Pikfyve gene disruption causes glucose intolerance, insulin resistance, adiposity and hyperinsulinemia but not muscle fiber-type switching. Am J Physiol Endocrinol Metab, 305, E119131.
  • 95
    Zohn IE & Sarkar AA (2010) The visceral yolk sac endoderm provides for absorption of nutrients to the embryo during neurulation. Birth Defects Res A Clin Mol Teratol 88, 593600.
  • 96
    Takasuga S, Horie Y, Sasaki J, Sun-Wada GH, Kawamura N, Iizuka R, Mizuno K, Eguchi S, Kofuji S, Kimura H et al. (2013) Critical roles of type III phosphatidylinositol phosphate kinase in murine embryonic visceral endoderm and adult intestine. Proc Natl Acad Sci USA 110, 17261731.
  • 97
    Van Gisbergen PA, Li M, Wu SZ & Bezanilla M (2012) Class II formin targeting to the cell cortex by binding PI(3,5)P2 is essential for polarized growth. J Cell Biol 198, 235250.
  • 98
    Fernandes F, Chen K, Ehrlich LS, Jin J, Chen MH, Medina GN, Symons M, Montelaro R, Donaldson J, Tjandra N et al. (2011) Phosphoinositides direct equine infectious anemia virus gag trafficking and release. Traffic 12, 438451.
  • 99
    Seebohm G, Neumann S, Theiss C, Novkovic T, Hill EV, Tavaré JM, Lang F, Hollmann M, Manahan-Vaughan D & Strutz-Seebohm N (2012) Identification of a novel signaling pathway and its relevance for GluA1 recycling. PLoS ONE 7, e33889.
  • 100
    Zhang Y, McCartney AJ, Zolov SN, Ferguson CJ, Meisler MH, Sutton MA & Weisman LS (2012) Modulation of synaptic function by VAC14, a protein that regulates the phosphoinositides PI(3,5)P2 and PI(5)P. EMBO J 31, 34423456.
  • 101
    Bridges D, Ma JT, Park S, Inoki K, Weisman LS & Saltiel AR (2012) Phosphatidylinositol 3,5-bisphosphate plays a role in the activation and subcellular localization of mechanistic target of rapamycin 1. Mol Biol Cell 23, 29552962.
  • 102
    Han BK & Emr SD (2011) Phosphoinositide [PI(3,5)P2] lipid-dependent regulation of the general transcriptional regulator Tup1. Genes Dev 25, 984995.
  • 103
    Han BK & Emr SD (2013) The PI(3,5)P2-dependent Tup1 conversion regulates metabolic reprogramming from glycolysis to gluconeogenesis. J Biol Chem, 288, 2063320645.
  • 104
    Balla A & Balla T (2006) Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends Cell Biol 16, 351361.
  • 105
    Hokin LE & Hokin MR (1964) The incorporation of 32P from (gamma-32P)adenosine triphosphate into polyphosphoinositides and phosphatidic acid in erythrocyte membranes. Biochim Biophys Acta 84, 563575.
  • 106
    Michell RH, Harwood JL, Coleman R & Hawthorne JN (1967) Characteristics of rat liver phosphatidylinositol kinase and its presence in the plasma membrane. Biochim Biophys Acta 144, 649658.
  • 107
    Nakatsu F, Baskin JM, Chung J, Tanner LB, Shui G, Lee SY, Pirruccello M, Hao M, Ingolia NT, Wenk MR et al. (2012) PtdIns4P synthesis by PI4KIIIα at the plasma membrane and its impact on plasma membrane identity. J Cell Biol 199, 10031016.
  • 108
    Cai X, Xu Y, Cheung AK, Tomlinson RC, Alcázar-Román A, Murphy L, Billich A, Zhang B, Feng Y, Klumpp M et al. (2013) PIKfyve, a Class III PI kinase, is the target of the small molecular IL-12/IL-23 inhibitor apilimod and a player in Toll-like receptor signaling. Chem Biol 25, 912921.
  • 109
    de Lartigue J, Polson H, Feldman M, Shokat K, Tooze SA, Urbé S & Clague MJ (2009) PIKfyve regulation of endosome-linked pathways. Traffic 10, 883893.
  • 110
    Wada Y, Lu R, Zhou D, Chu J, Przewloka T, Zhang S, Li L, Wu Y, Qin J, Balasubramanyam V et al. (2007) Selective abrogation of Th1 response by STA-5326, a potent IL-12/IL-23 inhibitor. Blood 109, 11561164.
  • 111
    Wada Y, Cardinale I, Khatcherian A, Chu J, Kantor AB, Gottlieb AB, Tatsuta N, Jacobson E, Barsoum J & Krueger JG (2012) Apilimod inhibits the production of IL-12 and IL-23 and reduces dendritic cell infiltration in psoriasis. PLoS One 7, e35069.