• 1
    Miyazaki K & Arnold FH (1999) Exploring nonnatural evolutionary pathways by saturation mutagenesis: rapid improvement of protein function. J Mol Evol 49, 716720.
  • 2
    Paramesvaran J, Hibbert EG, Russell AJ & Dalby PA (2009) Distributions of enzyme residues yielding mutants with improved substrate specificities from two different directed evolution strategies. Prot Eng Des Sel 22, 401411.
  • 3
    Leung D, Chen E & Goeddel DV (1989) A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1, 1115.
  • 4
    Stemmer WP (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389391.
  • 5
    Dalby PA (2003) Optimising enzyme function by directed evolution. Curr Opin Struct Biol 13, 500505.
  • 6
    Morley KL & Kazlauskas RJ (2005) Improving enzyme properties: when are closer mutations better? Trends Biotechnol 23, 231237.
  • 7
    Reetz MT & Carballeira JD (2007) Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc 2, 891903.
  • 8
    Reetz MT, Carballeira JD, Peyralans J, Hobenreich H, Maichele A & Vogel A (2006) Expanding the substrate scope of enzymes: combining mutations obtained by CASTing. Chem Eur J 12, 60316038.
  • 9
    Reetz MT, Wang LW & Bocola M (2006) Directed evolution of enantioselective enzymes: iterative cycles of CASTing for probing protein-sequence space. Angew Chem Int Ed Engl 45, 12361241.
  • 10
    Reetz MT, Kahakeaw D & Lohmer R (2008) Addressing the numbers problem in directed evolution. ChemBioChem 9, 17971804.
  • 11
    Kille S, Acevedo-Rocha CG, Parra LP, Zhang ZG, Opperman DJ, Reetz MT & Acevedo JP (2013) Reducing codon redundancy and screening effort of combinatorial protein libraries created by saturation mutagenesis. Acs Synth Biol 2, 8392.
  • 12
    Reetz MT (2012) Laboratory evolution of stereoselective enzymes as a means to expand the toolbox of organic chemists. Tetrahedron 68, 75307548.
  • 13
    Reetz MT, Prasad S, Carballeira JD, Gumulya Y & Bocola M (2010) Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods. J Am Chem Soc 132, 91449152.
  • 14
    Siloto RMP & Weselake RJ (2012) Site saturation mutagenesis: methods and application in protein engineering. Biocatal Agric Biotech 1, 181189.
  • 15
    Chica RA, Doucet N & Pelletier JN (2005) Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design. Curr Opin Biotechnol 16, 378384.
  • 16
    Padhi SK, Bougioukou DJ & Stewart JD (2009) Site-saturation mutagenesis of tryptophan 116 of Saccharomyces pastorianus old yellow enzyme uncovers stereocomplementary variants. J Am Chem Soc 131, 32713280.
  • 17
    Morra S, Giraudo A, Di Nardo G, King PW, Gilardi G & Valetti F (2012) Site saturation mutagenesis demonstrates a central role for cysteine 298 as proton donor to the catalytic site in CaHydA [FeFe]-hydrogenase. PLoS ONE 7, e48400.
  • 18
    Pohl M, Sprenger GA & Müller M (2004) A new perspective on thiamine catalysis. Curr Opin Biotechnol 15, 335342.
  • 19
    Kluger R & Tittmann K (2008) Thiamin diphosphate catalysis: enzymic and nonenzymic covalent intermediates. Chem Rev 108, 17971833.
  • 20
    Breslow RJ (1958) On the mechanism of thiamine action. IV. Evidence from studies on model systems. J Am Chem Soc 80, 37193726.
  • 21
    Kluger R (1987) Thiamin diphosphate: a mechanistic update on enzymic and nonenzymic catalysis of decarboxylation. Chem Rev 87, 863876.
  • 22
    Kern D, Kern G, Neef H, Tittmann K, Killenberg-Jabs M, Wikner C, Schneider G & Hübner G (1997) How thiamin diphosphate is activated in enzymes. Science 275, 6770.
  • 23
    Frank R, Leeper F & Luisi B (2007) Structure, mechanism and catalytic duality of thiamine-dependent enzymes. Cell Mol Life Sci 64, 892905.
  • 24
    Jordan F (1974) Semiempirical calculations on the electronic structure and preferred conformations of thiamine (vitamin B1) and thiamine pyrophosphate (cocarboxylase). J Am Chem Soc 96, 36233630.
  • 25
    Lindqvist L, Schneider G, Ermler U & Sundstrom M (1992) Three-dimensional structure of transketolase, a thiamine diphosphate enzyme at 2.5 Å resolution. EMBO J 11, 23732379.
  • 26
    Arjunan P, Umland T, Dyda F, Swaminathan S, Furey W, Sax M, Farrenkopf B, Gao Y, Zhang D & Jordan F (1996) Crystal structure of the thiamin diphosphate-dependent enzyme pyruvate decarboxylase from the yeast Saccharomyces cerevisiae at 2.3 Å resolution. J Mol Biol 256, 590600.
  • 27
    Hasson MS, Muscate A, McLeish MJ, Polovnikova LS, Gerlt JA, Kenyon GL, Petsko GA & Ringe D (1998) The crystal structure of benzoylformate decarboxylase at 1.6 Å resolution: diversity of catalytic residues in thiamin diphosphate-dependent enzymes. Biochemistry 37, 99189930.
  • 28
    Mosbacher TG, Müller M & Schulz GE (2005) Structure and mechanism of the ThDP-dependent benzaldehyde lyase from Pseudomonas fluorescens. FEBS J 272, 60676076.
  • 29
    Guo F, Zhang D, Kahyaoglu A, Farid RS & Jordan F (1998) Is a hydrophobic amino acid required to maintain the reactive V conformation of thiamin at the active center of thiamin diphosphate-requiring enzymes? Experimental and computational studies of isoleucine 415 of yeast pyruvate decarboxylase. Biochemistry 37, 1337913391.
  • 30
    Nemeria N, Chakraborty S, Baykal A, Korotchkina LG, Patel MS & Jordan F (2007) The 1′,4′-iminopyrimidine tautomer of thiamin diphosphate is poised for catalysis in asymmetric active centers on enzymes. Proc Natl Acad Sci USA 104, 7882.
  • 31
    Nemeria NS, Chakraborty S, Balakrishnan A & Jordan F (2009) Reaction mechanisms of thiamin diphosphate enzymes: defining states of ionization and tautomerization of the cofactor at individual steps. FEBS J 276, 24322446.
  • 32
    Kaplun A, Binshtein E, Vyazmensky M, Steinmetz A, Barak Z, Chipman DM, Tittmann K & Shaanan B (2008) Glyoxylate carboligase lacks the canonical active site glutamate of thiamine-dependent enzymes. Nat Chem Biol 4, 113118.
  • 33
    Nemeria N, Binshtein E, Patel H, Balakrishnan A, Vered I, Shaanan B, Barak Z, Chipman D & Jordan F (2012) Glyoxylate carboligase: a unique thiamin diphosphate-dependent enzyme that can cycle between the 4′-aminopyrimidinium and 1′,4′-iminopyrimidine tautomeric forms in the absence of the conserved glutamate. Biochemistry 51, 79407952.
  • 34
    Duggleby RG (2006) Domain relationships in thiamine diphosphate-dependent enzymes. Acc Chem Res 39, 550557.
  • 35
    Schellenberger A (1967) Structure and mechanism of action of the active center of yeast pyruvate decarboxylase. Angew Chem Int Ed Engl 6, 10241035.
  • 36
    Kluger R (1992) Mechanisms of enzymic carbon-carbon bond formation and cleavage. In The Enzymes (Sigman DS, ed.), pp. 271315, Academic Press, San Diego.
  • 37
    Knoll M, Müller M, Pleiss J & Pohl M (2006) Factors mediating activity, selectivity, and substrate specificity for the thiamin diphosphate-dependent enzymes benzaldehyde lyase and benzoylformate decarboxylase. ChemBioChem 7, 19281934.
  • 38
    Fuganti C. & Grasselli P (1982) Synthesis of the C14 chromanyl moiety of natural α-tocopherol (vitamin E). J Chem Soc Chem Comm 4, 205206.
  • 39
    Gala D, DiBenedetto DJ, Clark JE, Murphy BL, Schumacher DP & Steinman M (1996) Preparations of antifungal Sch 42427/MS 9164: preparative chromatographic resolution, and total asymmetric synthesis via enzymic preparation of chiral α-hydroxy arylketones. Tetrahedron Lett 37, 611614.
  • 40
    Andrews FH & McLeish MJ (2012) Substrate specificity in thiamin diphosphate-dependent decarboxylases. Bioorg Chem 43, 2636.
  • 41
    Chang AK, Nixon PF & Duggleby RG (1999) Aspartate-27 and glutamate-473 are involved in catalysis by Zymomonas mobilis pyruvate decarboxylase. Biochem J 339, 255260.
  • 42
    Schenk G, Leeper FJ, England R, Nixon PF & Duggleby RG (1997) The role of His113 and His114 in pyruvate decarboxylase from Zymomonas mobilis. Eur J Biochem 248, 6371.
  • 43
    Wu Y-G, Chang AK, Nixon PF, Li W & Duggleby RG (2000) Mutagenesis at Asp27 of pyruvate decarboxylase from Zymomonas mobilis. Eur J Biochem 267, 64936500.
  • 44
    Huang C-Y, Chang AK, Nixon PF & Duggleby RG (2001) Site-directed mutagenesis of the ionizable groups in the active site of Zymomonas mobilis pyruvate decarboxylase. Eur J Biochem 268, 35583565.
  • 45
    Liu M, Sergienko EA, Guo F, Wang J, Tittmann K, Hübner G, Furey W & Jordan F (2001) Catalytic acid-base groups in yeast pyruvate decarboxylase. 1. Site-directed mutagenesis and steady-state kinetic studies on the enzyme with the D28A, H114F, H115F, and E477Q substitutions. Biochemistry 40, 73557368.
  • 46
    Sergienko EA & Jordan F (2001) Catalytic acid-base groups in yeast pyruvate decarboxylase. 2. Insights into the specific roles of D28 and E477 from the rates and stereospecificity of formation of carboligase side products. Biochemistry 40, 73697381.
  • 47
    Sergienko EA & Jordan F (2001) Catalytic acid-base groups in yeast pyruvate decarboxylase. 3. A steady-state kinetic model consistent with the behavior of both wild-type and variant enzymes at all relevant pH values. Biochemistry 40, 73827403.
  • 48
    Siegert P, McLeish MJ, Baumann M, Iding H, Kneen MM, Kenyon GL & Pohl M (2005) Exchanging the substrate specificities of pyruvate decarboxylase from Zymomonas mobilis and benzoylformate decarboxylase from Pseudomonas putida. Prot Eng Des Sel 18, 345357.
  • 49
    Yep A, Kenyon GL & McLeish MJ (2006) Determinants of substrate specificity in KdcA, a thiamin diphosphate-dependent decarboxylase. Bioorg Chem 34, 325336.
  • 50
    Kneen MM, Stan R, Yep A, Tyler RP, Saehuan C & McLeish MJ (2011) Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from Saccharomyces cerevisiae. FEBS J 278, 18421853.
  • 51
    Hegeman GD (1970) Benzoylformate decarboxylase (Pseudomonas putida). Methods Enzymol 17, 674678.
  • 52
    Rao DNR & Vaidyanathan CS (1977) Metabolism of mandelic acid by Neurospora crassa. Can J Microbiol 23, 14961499.
  • 53
    Fewson CA (1988) Microbial metabolism of mandelate: a microcosm of diversity. FEMS Microbiol Rev 4, 85110.
  • 54
    Saehuan C, Rojanarata T, Wiyakrutta S, McLeish MJ & Meevootisom V (2007) Isolation and characterization of a benzoylformate decarboxylase and a NAD+/NADP+-dependent benzaldehyde dehydrogenase involved in D-phenylglycine metabolism in Pseudomonas stutzeri ST-201. Biochim Biophys Acta 1770, 15851592.
  • 55
    Polovnikova ES, McLeish MJ, Sergienko EA, Burgner JT, Anderson NL, Bera AK, Jordan F, Kenyon GL & Hasson MS (2003) Structural and kinetic analysis of catalysis by a thiamin diphosphate-dependent enzyme, benzoylformate decarboxylase. Biochemistry 42, 18201830.
  • 56
    Sergienko EA, Wang J, Polovnikova L, Hasson MS, McLeish MJ, Kenyon GL & Jordan F (2000) Spectroscopic detection of transient thiamin diphosphate-bound intermediates on benzoylformate decarboxylase. Biochemistry 39, 1386213869.
  • 57
    Yep A, Kenyon GL & McLeish MJ (2008) Saturation mutagenesis of putative catalytic residues of benzoylformate decarboxylase provides a challenge to the accepted mechanism. Proc Natl Acad Sci USA 105, 57335738.
  • 58
    Brandt GS, Kneen MM, Chakraborty S, Baykal AT, Nemeria N, Yep A, Ruby DI, Petsko GA, Kenyon GL, McLeish MJ et al. (2009) Snapshot of a reaction intermediate: analysis of benzoylformate decarboxylase in complex with a benzoylphosphonate inhibitor. Biochemistry 48, 32473257.
  • 59
    Morrison KL & Weiss GA (2001) Combinatorial alanine scanning. Curr Opin Chem Biol 5, 302307.
  • 60
    Andrews FH, Tom AR, Gunderman PR, Novak WRP & McLeish MJ (2013) A bulky hydrophobic residue is not required to maintain the V-conformation of enzyme-bound thiamin diphosphate. Biochemistry 52, 30283030.
  • 61
    Yep A & McLeish MJ (2009) Engineering the substrate binding site of benzoylformate decarboxylase. Biochemistry 48, 83878395.
  • 62
    Hildebrandt G & Klavehn W (1930) Verhafen zur Herstellung von 1-1-phenyl-2-methylaminopropan-1-ol in German Patent no 548-459.
  • 63
    Pohl M, Lingen B & Müller M (2002) Thiamin-diphosphate-dependent enzymes: new aspects of asymmetric C-C bond formation. Chem Eur J 8, 52885295.
  • 64
    Müller M, Gocke D & Pohl M (2009) Thiamin diphosphate in biological chemistry: exploitation of diverse thiamin diphosphate-dependent enzymes for asymmetric chemoenzymatic synthesis. FEBS J 276, 28942904.
  • 65
    Müller M, Sprenger GA & Pohl M (2013) C-C bond formation using ThDP-dependent lyases. Curr Opin Chem Biol 17, 261270.
  • 66
    Wells JA (1990) Additivity of mutational effects in proteins. Biochemistry 29, 85098517.
  • 67
    Mildvan AS, Weber DJ & Kuliopulos A (1992) Quantitative interpretations of double mutations of enzymes. Arch Biochem Biophys 294, 327340.
  • 68
    Wilcocks R, Ward OP, Collins S, Dewdney NJ, Hong Y & Prosen E (1992) Acyloin formation by benzoylformate decarboxylase from Pseudomonas putida. Appl Environ Microbiol 58, 16991704.
  • 69
    Demir AS, Dünnwald T, Iding H, Pohl M & Müller M (1999) Asymmetric benzoin reaction catalyzed by benzoylformate decarboxylase. Tetrahedron: Asymmetry 10, 47694774.
  • 70
    Dünnwald T, Demir AS, Siegert P, Pohl M & Müller M (2000) Enantioselective synthesis of (S)-2-hydroxypropanone derivatives by benzoylformate decarboxylase catalyzed C-C bond formation. Eur J Org Chem 2000, 21612170.
  • 71
    Iding H, Dünnwald T, Greiner L, Liese A, Müller M, Siegert P, Grötzinger J, Demir AS & Pohl M (2000) Benzoylformate decarboxylase from Pseudomonas putida as stable catalyst for the synthesis of chiral 2-hydroxy ketones. Chem Eur J 6, 14831495.
  • 72
    Lingen B, Grötzinger J, Kolter D, Kula M-R & Pohl M (2002) Improving the carboligase activity of benzoylformate decarboxylase from Pseudomonas putida by a combination of directed evolution and site-directed mutagenesis. Prot Eng 15, 585593.
  • 73
    Lingen B, Kolter-Jung D, Duenkelmann P, Feldmann R, Groetzinger J, Pohl M & Mueller M (2003) Alteration of the substrate specificity of benzoylformate decarboxylase from Pseudomonas putida by directed evolution. ChemBioChem 4, 721726.
  • 74
    Srere PA, Cooper JR, Klybas V & Racker E (1955) Xylulose-5-phosphate, a new intermediate in the pentose phosphate cycle. Arch Biochem Biophys 59, 535538.
  • 75
    Flechner A, Dressen U, Westhoff P, Henze K, Schnarrenberger C & Martin W (1996) Molecular characterization of transketolase (EC active in the Calvin cycle of spinach chloroplasts. Plant Mol Biol 32, 475484.
  • 76
    Schneider G & Lindqvist Y (1998) Crystallography and mutagenesis of transketolase: mechanistic implications for enzymatic thiamin catalysis. Biochim Biophys Acta Prot Struct Mol Enzymol 1385, 387398.
  • 77
    Kochetov GA & Sevostyanova IA (2005) Binding of the coenzyme and formation of the transketolase active center. IUBMB Life 57, 491497.
  • 78
    Tittmann K & Wille G (2009) X-ray crystallographic snapshots of reaction intermediates in pyruvate oxidase and transketolase illustrate common themes in thiamin catalysis. J Mol Catal B: Enzymatic 61, 9399.
  • 79
    Datta AG & Racker E (1961) Mechanism of action of transketolase. I. Properties of the crystalline yeast enzyme. J Biol Chem 236, 617623.
  • 80
    Sprenger GA & Pohl M (1999) Synthetic potential of thiamin diphosphate-dependent enzymes. J Mol Catal B: Enzym 6, 145159.
  • 81
    Schörken U & Sprenger GA (1998) Thiamin-dependent enzymes as catalysts in chemoenzymatic syntheses. Biochim Biophys Acta 1385, 229243.
  • 82
    Turner NJ (2000) Applications of transketolases in organic synthesis. Curr Opin Biotechnol 11, 527531.
  • 83
    Myles DC, Andrulis III PJ & Whitesides GM (1991) A transketolase-based synthesis of (+)-exo-brevicomin. Tetrahedron Lett 32, 48354838.
  • 84
    Hecquet L, Bolte J & Demuynck C (1994) Chemoenzymatic synthesis of 6-deoxy-D-fructose and 6-deoxy-L-sorbose using transketolase. Tetrahdron 50, 86778684.
  • 85
    Cazares A, Galman JL, Crago LG, Smith ME, Strafford J, Rios-Solis L, Lye GJ, Dalby PA & Hailes HC (2010) Non-alpha-hydroxylated aldehydes with evolved transketolase enzymes. Org Biomol Chem 8, 13011309.
  • 86
    Ranoux A, Karmee SK, Jin J, Bhaduri A, Caiazzo A, Arends IW & Hanefeld U (2012) Enhancement of the substrate scope of transketolase. ChemBioChem 13, 19211931.
  • 87
    Hibbert EG, Senussi T, Costelloe SJ, Lei W, Smith MEB, Ward JM, Hailes HC & Dalby PA (2007) Directed evolution of transketolase activity on non-phosphorylated substrates. J Biotechnol 131, 425432.
  • 88
    Nilsson U, Meshalkina L, Lindqvist Y & Schneider G (1997) Examination of substrate binding in thiamin diphosphate-dependent transketolase by protein crystallography and site-directed mutagenesis. J Biol Chem 272, 18641869.
  • 89
    Asztalos P, Parthier C, Golbik R, Kleinschmidt M, Hübner G, Weiss MS, Friedemann R, Wille G & Tittmann K (2007) Strain and near attack conformers in enzymic thiamin catalysis: X-ray crystallographic snapshots of bacterial transketolase in covalent complex with donor ketoses xylulose 5-phosphate and fructose 6-phosphate, and in noncovalent complex with acceptor aldose ribose 5-phosphate. Biochemistry 46, 1203712052.
  • 90
    Miller OJ, Hibbert EG, Ingram CU, Lye GJ & Dalby PA (2007) Optimisation and evaluation of a generic microplate-based HPLC screen for transketolase activity. Biotechnol Lett 29, 17591770.
  • 91
    Nikkola M, Lindqvist Y & Schneider G (1994) Refined structure of transketolase from Saccharomyces cerevisiae at 2.0 Å resolution. J Mol Biol 238, 387404.
  • 92
    Smith MEB, Kaulmann U, Ward JM & Hailes HC (2006) A colorimetric assay for screening transketolase activity. Bioorgan Med Chem 14, 70627065.
  • 93
    Hibbert EG, Senussi T, Smith ME, Costelloe SJ, Ward JM, Hailes HC & Dalby PA (2008) Directed evolution of transketolase substrate specificity towards an aliphatic aldehyde. J Biotechnol 134, 240245.
  • 94
    Smith MEB, Hibbert EG, Jones AB, Dalby PA & Hailes HC (2008) Enhancing and reversing the stereoselectivity of Escherichia coli transketolase via single-point mutations. Advan Synth Catal 350, 26312638.
  • 95
    Galman JL, Steadman D, Bacon S, Morris P, Smith MEB, Ward JM, Dalby PA & Hailes HC (2010) [α, α’-Dihydroxyketone formation using aromatic and heteroaromatic aldehydes with evolved transketolase enzymes. Chem Comm 46, 76087610.
  • 96
    Dünkelmann P, Kolter-Jung D, Nitsche A, Demir AS, Siegert P, Lingen B, Baumann M, Pohl M & Müller M (2002) Development of a donor-acceptor concept for enzymatic cross-coupling reactions of aldehydes: the first asymmetric cross-benzoin condensation. J Am Chem Soc 124, 1208412085.
  • 97
    König S, Schellenberger A, Neef H & Schneider G (1994) Specificity of coenzyme binding in thiamin diphosphate-dependent enzymes. Crystal structures of yeast transketolase in complex with analogs of thiamin diphosphate. J Biol Chem 269, 1087910882.
  • 98
    Bunik VI, Denton TT, Xu H, Thompson CM, Cooper AJL & Gibson GE (2005) Phosphonate analogues of α-ketoglutarate inhibit the activity of the α-ketoglutarate dehydrogenase complex isolated from brain and in cultured cells. Biochemistry 44, 1055210561.
  • 99
    Frank RAW, Price AJ, Northrop FD, Perham RN & Luisi BF (2007) Crystal structure of the E1 component of the Escherichia coli 2-oxoglutarate dehydrogenase multienzyme complex. J Mol Biol 368, 639651.
  • 100
    Bunik V (2000) Increased catalytic performance of the 2-oxoacid dehydrogenase complexes in the presence of thioredoxin, a thiol-disulfide oxidoreductase. J Mol Catal B: Enzym 8, 165174.
  • 101
    Shim DJ, Nemeria NS, Balakrishnan A, Patel H, Song J, Wang J, Jordan F & Farinas ET (2011) Assignment of function to histidines 260 and 298 by engineering the E1 component of the Escherichia coli 2-oxoglutarate dehydrogenase complex; substitutions that lead to acceptance of substrates lacking the 5-carboxyl group. Biochemistry 50, 77057709.
  • 102
    Bhasin M, Billinsky JL & Palmer DRJ (2003) Steady-state kinetics and molecular evolution of Escherichia coli MenD [(1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase], an anomalous thiamin diphosphate-dependent decarboxylase–carboligase. Biochemistry 42, 1349613504.
  • 103
    Jiang M, Cao Y, Guo Z-F, Chen M, Chen X & Guo Z (2007) Menaquinone biosynthesis in Escherichia coli: identification of 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate as a novel intermediate and re-evaluation of MenD activity. Biochemistry 46, 1097910989.
  • 104
    Kurutsch A, Richter M, Brecht V, Sprenger GA & Müller M (2009) MenD as a versatile catalyst for asymmetric synthesis. J Mol Catal B: Enzym 61, 5666.
  • 105
    Dawson A, Fyfe PK & Hunter WN (2008) Specificity and reactivity in menaquinone biosynthesis: the structure of Escherichia coli MenD (2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate synthase). J Mol Biol 384, 13531368.
  • 106
    Westphal R, Waltzer S, Mackfeld U, Widmann M, Pleiss J, Beigi M, Müller M, Rother D & Pohl M (2013) (S)-Selective MenD variants from Escherichia coli provide access to new functionalized chiral α-hydroxy ketones. Chem Commun 49, 20612063.
  • 107
    Westphal R, Hahn D, Mackfeld U, Waltzer S, Beigi M, Widmann M, Vogel C, Pleiss J, Müller M, Rother D et al. (2013) Tailoring (S)-selectivity of 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate synthase (MenD) from Escherichia coli, ChemCatChem, in press.
  • 108
    Fang M, Macova A, Hanson KL, Kos J & Palmer DRJ (2011) Using substrate analogues to probe the kinetic mechanism and active site of Escherichia coli MenD. Biochemistry 50, 87128721.
  • 109
    Fang M, Toogood RD, Macova A, Ho K, Franzblau SG, McNeil MR, Sanders DA & Palmer DR (2010) Succinylphosphonate esters are competitive inhibitors of MenD that show active-site discrimination between homologous α-ketoglutarate-decarboxylating enzymes. Biochemistry 49, 26722679.
  • 110
    Peracchi A (2001) Enzyme catalysis: removing chemically ‘essential’ residues by site-directed mutagenesis. Trends Biochem Sci 26, 497503.
  • 111
    The PyMOL Molecular Graphics System, Version 1.3, Schrödinger, LLC.