• 1
    Andi B, West AH & Cook PF (2005) Regulatory mechanism of histidine-tagged homocitrate synthase from Saccharomyces cerevisiae. I. Kinetic studies. J Biol Chem 280, 3162431632.
  • 2
    Quezada H, Aranda C, DeLuna A, Hernández H, Calcagno ML, Marín-Hernández A & González A (2008) Specialization of the paralogue LYS21 determines lysine biosynthesis under respiratory metabolism in Saccharomyces cerevisiae. Microbiology 154, 16561667.
  • 3
    Quezada H, Marín-Hernández A, Aguilar D, López G, Gallardo-Pérez JC, Jasso-Chávez R, González A, Saavedra E & Moreno-Sánchez R (2011) The Lys20 homocitrate synthase isoform exerts most of the flux control over the lysine synthesis pathway in Saccharomyces cerevisiae. Mol Microbiol 82, 578590.
  • 4
    Ikeda M & Katsumata R (1999) Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified pentose phosphate pathway. Appl Environ Microbiol 65, 24972502.
  • 5
    Ikeda M (2006) Towards bacterial strains overproducing l-tryptophan and other aromatics by metabolic engineering. Appl Microbiol Biotechnol 69, 615626.
  • 6
    Tatarko M & Romeo T (2001) Disruption of a global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in Escherichia coli. Curr Microbiol 43, 2632.
  • 7
    Ikeda M, Ohnishi J, Hayashi M & Mitsuhashi S (2006) A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient l-lysine production. J Ind Microbiol Biotechnol 33, 610615.
  • 8
    Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Möckel B, Sahm H & Eikmanns BJ (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3, 295300.
  • 9
    Shirai T, Fujimura K, Furusawa C, Nagahisa K, Shioya S & Shimizu H (2007) Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis. Microb Cell Fact 6, 19.
  • 10
    Fan J, Yan C, Andre C, Shanklin J, Schwender J & Xu C (2012) Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii. Plant Cell Physiol 53, 13801390.
  • 11
    Gunnarsson N, Eliasson A & Nielsen J (2004) Control of fluxes towards antibiotics and the role of primary metabolism in production of antibiotics. Adv Biochem Eng Biotechnol 88, 137178.
  • 12
    Feller A, Ramos F, Piérard A & Dubois E (1997) Lys80p of Saccharomyces cerevisiae, previously proposed as a specific repressor of LYS genes, is a pleiotropic regulatory factor identical to Mks1p. Yeast 13, 13371346.
  • 13
    Wittmann C, Hans M, van Winden WA, Ras C & Heijnen JJ (2005) Dynamics of intracellular metabolites of glycolysis and TCA cycle during cell-cycle-related oscillation in Saccharomyces cerevisiae. Biotechnol Bioeng 89, 839847.
  • 14
    Fell DA (1997) Understanding the Control of Metabolism. Portland Press, London.
  • 15
    Moreno-Sánchez R, Saavedra E, Rodríguez-Enríquez S & Olín-Sandoval V (2008) Metabolic control analysis: a tool for designing strategies to manipulate metabolic pathways. J Biomed Biotechnol 2008, 597913.
  • 16
    Brown GC, Hafner RP & Brand MD (1990) A ‘top-down’ approach to the determination of control coefficients in metabolic control theory. Eur J Biochem 188, 321325.
  • 17
    Koebmann BJ, Westerhoff HV, Snoep JL, Nilsson D & Jensen PR (2002) The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J Bacteriol 184, 39093916.
  • 18
    Marín-Hernández A, Rodríguez-Enríquez S, Vital-González PA, Flores-Rodríguez FL, Macías-Silva M, Sosa-Garrocho M & Moreno-Sánchez R (2006) Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase. FEBS J 273, 19751988.
  • 19
    Brand MD (1998) Top-down elasticity analysis and its application to energy metabolism in isolated mitochondria and intact cells. Mol Cell Biochem 184, 1320.
  • 20
    Ainscow EK & Brand MD (1999) Top-down control analysis of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes. Eur J Biochem 263, 671685.
  • 21
    Beuste C, Miraux S, Deschodt-Arsac VJ, Thiaudiere E, Franconi JM, Diolez P & Arsac LM (2009) Modular regulation analysis of integrative effects of hypoxia on the energetics of contracting skeletal muscle in vivo. Biochem J 420, 6772.
  • 22
    Miller SM & Magasanik B (1990) Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae. J Bacteriol 172, 49274935.
  • 23
    Palmieri F, Agrimi G, Blanco E, Castegna A, Di Noia MA, Iacobazzi V, Lasorsa FM, Marobbio CM, Palmieri L, Scarcia P et al. (2006) Identification of mitochondrial carriers in Saccharomyces cerevisiae by transport assay of reconstituted recombinant proteins. Biochim Biophys Acta 1757, 12491262.
  • 24
    Kitamoto K, Yoshizawa K, Ohsumi Y & Anraku Y (1988) Dynamic aspects of vacuolar and cytosolic amino acid pools of Saccharomyces cerevisiae. J Bacteriol 170, 26832686.
  • 25
    Chen S, Brockenbrough JS, Dove JE & Aris JP (1997) Homocitrate synthase is located in the nucleus in the yeast Saccharomyces cerevisiae. J Biol Chem 272, 1083910846.
  • 26
    Allen TD, Cronshaw JM, Bagley S, Kiseleva E & Goldberg MW (2000) The nuclear pore complex: mediator of translocation between nucleus and cytoplasm. J Cell Sci 113, 16511659.
  • 27
    Gombert AK, Moreira dos Santos M, Christensen B & Nielsen J (2001) Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J Bacteriol 183, 14411451.
  • 28
    Dilova I, Chen CY & Powers T (2002) Mks1 in concert with TOR signaling negatively regulates RTG target gene expression in S. cerevisiae. Curr Biol 12, 389395.
  • 29
    Sekito T, Liu Z, Thornton J & Butow RA (2002) RTG-dependent mitochondria-to-nucleus signaling is regulated by MKS1 and is linked to formation of yeast prion [URE3]. Mol Biol Cell 13, 795804.
  • 30
    Ramos F, Dubois E & Piérard A (1988) Control of enzyme synthesis in the lysine biosynthetic pathway of Saccharomyces cerevisiae. Evidence for a regulatory role of gene LYS14. Eur J Biochem 171, 171176.
  • 31
    Xu H, Andi B, Qian J, West AH & Cook PF (2006) The α-aminoadipate pathway for lysine biosynthesis in fungi. Cell Biochem Biophys 46, 4364.
  • 32
    Cupp JR & McAlister-Henn L (1991) NAD+-dependent isocitrate dehydrogenase. Cloning, nucleotide sequence, and disruption of the IDH2 gene from Saccharomyces cerevisiae. J Biol Chem 266, 2219922205.
  • 33
    Contreras-Shannon V, Lin AP, McCammon MT & McAlister-Henn L (2005) Kinetic properties and metabolic contributions of yeast mitochondrial and cytosolic NADP+-specific isocitrate dehydrogenases. J Biol Chem 280, 44694475.
  • 34
    Flint HJ, Tateson RW, Barthelmess IB, Porteous DJ, Donachie WD & Kacser H (1981) Control of the flux in the arginine pathway of Neurospora crassa. Modulations of enzyme activity and concentration. Biochem J 200, 231246.
  • 35
    Kacser H (1983) The control of enzyme systems in vivo: elasticity analysis of the steady state. Biochem Soc Trans 11, 3540.
  • 36
    Fell DA & Sauro HM (1985) Metabolic control and its analysis. Additional relationships between elasticities and control coefficients. Eur J Biochem 148, 555561.
  • 37
    DeLuna A, Avendano A, Riego L & Gonzalez A (2001) NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles. J Biol Chem 276, 4377543783.
  • 38
    Saavedra E, Rodríguez-Enríquez S, Quezada H, Jasso-Chávez R & Moreno-Sánchez R (2011) The metabolic basis. Rational design of strategies based on metabolic control analysis. In Comprehensive Biotechnology, Vol. 1, 2nd edn (Murray M, ed.), pp. 511524. Elsevier, Amsterdam, The Netherlands.
  • 39
    Schöbel F, Jacobsen ID & Brock M (2010) Evaluation of lysine biosynthesis as an antifungal drug target: biochemical characterization of Aspergillus fumigatus homocitrate synthase and virulence studies. Eukaryot Cell 9, 878893.
  • 40
    Eisler H, Fröhlich KU & Heidenreich E (2004) Starvation for an essential amino acid induces apoptosis and oxidative stress in yeast. Exp Cell Res 300, 345353.
  • 41
    Stephen DW & Jamieson DJ (1997) Amino acid-dependent regulation of the Saccharomyces cerevisiae GSH1 gene by hydrogen peroxide. Mol Microbiol 23, 203210.
  • 42
    Takagi H, Iwamoto F & Nakamori S (1997) Isolation of freeze-tolerant laboratory strains of Saccharomyces cerevisiae from proline-analogue-resistant mutants. Appl Microbiol Biotechnol 47, 405411.
  • 43
    Koffas MAG, Jung GY & Stephanopoulos G (2003) Engineering metabolism and product formation in Corynebacterium glutamicum by coordinated gene overexpression. Metab Eng 5, 3241.
  • 44
    Peters-Wendisch P, Stansen KC, Götker S & Wendisch VF (2012) Biotin protein ligase from Corynebacterium glutamicum: role for growth and l-lysine production. Appl Microbiol Biotechnol 93, 24932502.
  • 45
    Christianson TW, Sikorski RS, Dante M, Shero JH & Hieter P (1992) Multifunctional yeast high-copy-number shuttle vectors. Gene 110, 119122.
  • 46
    Ito H, Fukuda Y, Murata K & Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153, 163168.
  • 47
    Lin AP & McAlister-Henn L (2002) Isocitrate binding at two functionally distinct sites in yeast NAD+-specific isocitrate dehydrogenase. J Biol Chem 277, 2247522483.
  • 48
    Doherty D (1970) l-Glutamate dehydrogenase (yeast). Methods Enzymol 17, 850856.
  • 49
    Kim KS, Rosenkrantz MS & Guarente L (1986) Saccharomyces cerevisiae contains two functional citrate synthase genes. Mol Cell Biol 6, 19361942.
  • 50
    Roon RJ, Even HL & Larimore F (1974) Glutamate synthase: properties of the reduced nicotinamide adenine dinucleotide-dependent enzyme from Saccharomyces cerevisiae. J Bacteriol 118, 8995.
  • 51
    Lowry OH, Rosebrough NJ, Farr AL & Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265275.