• 1
    Jordan F (2003) Current mechanistic understanding of thiamin diphosphate-dependent enzymatic reactions. Nat Prod Rep 20, 184201.
  • 2
    Frank RAW, Leeper FJ & Luisi BF (2007) Structure, mechanism and catalytic duality of thiamine-dependent enzymes. Cell Mol Life Sci 64, 892905.
  • 3
    Müller M, Sprenger GA & Pohl M (2013) C–C-bond formation using ThDP-dependent lyases. Curr Opin Chem Biol 17, 261270.
  • 4
    Brovetto M, Gamenara D, Saenz Méndez P & Seoane GA (2011) C–C bond-forming lyases in organic synthesis. Chem Rev 111, 43464403.
  • 5
    Widmann M, Radloff R & Pleiss J (2010) The Thiamine diphosphate dependent Enzyme Engineering Database: a tool for the systematic analysis of sequence and structure relations. BMC Biochem 11, 9.
  • 6
    Müller M, Gocke D & Pohl M (2009) Thiamin diphosphate in biological chemistry: exploitation of diverse thiamin diphosphate-dependent enzymes for asymmetric chemoenzymatic synthesis. FEBS J 276, 28942940.
  • 7
    Pohl M, Gocke D & Müller M (2009) Thiamin-based enzymes for biotransformations. In Handbook of Green Chemistry: Green Catalysis (Anastas PT, ed.), pp. 75114. Wiley-VCH, Weinheim.
  • 8
    Dünkelmann P & Müller M (2011) Enzymatic C–C coupling in the synthesis of fine chemicals. Speciality Chemicals Mag 31, 1618.
  • 9
    Pohl M, Dresen C, Beigi M & Müller M (2012) Enzymatic acyloin and benzoin condensations. In Enzyme Catalysis in Organic Synthesis (Drauz K, Gröger H & May O, eds), pp. 919946. Wiley-VCH, Weinheim.
  • 10
    Demuynck C, Bolte J, Hecquet L & Dalmas V (1991) Enzyme-catalysed synthesis of carbohydrates – synthetic potential of transketolase. Tetrahedron Lett 32, 50855088.
  • 11
    Nilsson U, Meshalkina L, Lindqvist Y & Schneider G (1997) Examination of substrate binding in thiamin diphosphate-dependent transketolase by protein crystallography and site-directed mutagenesis. J Biol Chem 272, 18641869.
  • 12
    Hibbert EG, Senussi T, Costelloe SJ, Lei W, Smith MEB, Ward JM, Hailes HC & Dalby PA (2007) Directed evolution of transketolase activity on non-phosphorylated substrates. J Biotechnol 131, 425432.
  • 13
    Smith MEB, Hibbert EG, Jones AB, Dalby PA & Hailes HC (2008) Enhancing and reversing the stereoselectivity of Escherichia coli transketolase via single-point mutations. Adv Synth Catal 350, 26312638.
  • 14
    Payongsri P, Steadman D, Strafford J, MacMurray A, Hailes HC & Dalby PA (2012) Rational substrate and enzyme engineering of transketolase for aromatics. Org Biomol Chem 10, 90219029.
  • 15
    Ranoux A, Karmee SK, Jin J, Bhaduri A, Caiazzo A, Arends IW & Hanefeld U (2012) Enhancement of the substrate scope of transketolase. ChemBioChem 13, 19211931.
  • 16
    Ranoux A & Hanefeld U (2013) Improving transketolase. Top Catal 56, 750764.
  • 17
    Engel S, Vyazmensky M, Geresh S, Barak Z & Chipman DM (2003) Acetohydroxyacid synthase: a new enzyme for chiral synthesis of R-phenylacetylcarbinol. Biotechnol Bioeng 83, 833840.
  • 18
    Chipman DM, Duggleby RG & Tittmann K (2005) Mechanisms of acetohydroxyacid synthases. Curr Opin Chem Biol 9, 475481.
  • 19
    Vinogradov M, Kaplun A, Vyazmensky M, Engel S, Golbik R, Tittmann K, Uhlemann K, Meshalkina L, Barak Z, Hübner G et al. (2005) Monitoring the acetohydroxy acid synthase reaction and related carboligations by circular dichroism spectroscopy. Anal Biochem 342, 126133.
  • 20
    Vyazmensky M, Steinmetz A, Meyer D, Golbik R, Ze Barak, Tittmann K & Chipman DM (2011) Significant catalytic roles for Glu47 and Gln 110 in all four of the C–C bond-making and -breaking steps of the reactions of acetohydroxyacid synthase II. Biochemistry 50, 32503260.
  • 21
    Belenky I, Steinmetz A, Vyazmensky M, Ze Barak, Tittmann K & Chipman DM (2012) Many of the functional differences between acetohydroxyacid synthase (AHAS) isozyme I and other AHASs are a result of the rapid formation and breakdown of the covalent acetolactate–thiamin diphosphate adduct in AHAS I. FEBS J 279, 19671979.
  • 22
    Dünkelmann P, Kolter-Jung D, Nitsche A, Demir AS, Siegert P, Lingen B, Baumann M, Pohl M & Müller M (2002) Development of a donor–acceptor concept for enzymatic cross-coupling reactions of aldehydes: the first asymmetric cross-benzoin condensation. J Am Chem Soc 124, 1208412085.
  • 23
    Lingen B, Kolter-Jung D, Dünkelmann P, Feldmann R, Grötzinger J, Pohl M & Müller M (2003) Alteration of the substrate specificity of benzoylformate decarboxylase from Pseudomonas putida by directed evolution. ChemBioChem 4, 721726.
  • 24
    Siegert P, McLeish MJ, Baumann M, Iding H, Kneen MM, Kenyon GL & Pohl M (2005) Exchanging the substrate specificities of pyruvate decarboxylase from Zymomonas mobilis and benzoylformate decarboxylase from Pseudomonas putida. Protein Eng Des Sel 18, 345357.
  • 25
    Domínguez de María P, Pohl M, Gocke D, Gröger H, Trauthwein H, Stillger T & Müller M (2007) Asymmetric synthesis of aliphatic 2-hydroxy ketones by enzymatic carboligation of aldehydes. Eur J Org Chem, 29402944.
  • 26
    Mikolajek R, Spiess AC, Pohl M, Lamare S & Büchs J (2007) An activity, stability and selectivity comparison of propioin synthesis by thiamine diphosphate-dependent enzymes in a solid/gas bioreactor. ChemBioChem 8, 10631070.
  • 27
    Cosp A, Dresen C, Pohl M, Walter L, Röhr C & Müller M (2008) α, β-Unsaturated aldehydes as substrates for asymmetric C–C bond forming reactions with thiamin diphosphate (ThDP)-dependent enzymes. Adv Synth Catal 350, 759771.
  • 28
    Gocke D, Walter L, Gauchenova E, Kolter G, Knoll M, Berthold CL, Schneider G, Pleiss J, Müller M & Pohl M (2008) Rational protein design of ThDP-dependent enzymes: engineering stereoselectivity. ChemBioChem 9, 406412.
  • 29
    Domínguez de María P, Stillger T, Pohl M, Kiesel M, Liese A, Gröger H & Trauthwein H (2008) Enantioselective C–C bond ligation using recombinant E. coli-whole-cell biocatalysts. Adv Synth Catal 350, 165173.
  • 30
    Demir AS, Sesenoglu O, Eren E, Hosrik B, Pohl M, Janzen E, Kolter D, Feldmann R, Dünkelmann P & Müller M (2002) Enantioselective synthesis of alpha-hydroxy ketones via benzaldehyde lyase-catalyzed C–C bond formation reaction. Adv Synth Catal 344, 96103.
  • 31
    Demir AS, Sesenoglu O, Dünkelmann P & Müller M (2003) Benzaldehyde lyase-catalyzed enantioselective carboligation of aromatic aldehydes with mono- and dimethoxy acetaldehyde. Org Lett 5, 20472050.
  • 32
    Knoll M, Müller M, Pleiss J & Pohl M (2006) Factors mediating activity, selectivity, and substrate specificity for the thiamin diphosphate-dependent enzymes benzaldehyde lyase and benzoylformate decarboxylase. ChemBioChem 7, 19281934.
  • 33
    Domínguez de María P, Stillger T, Pohl M, Wallert S, Drauz K, Gröger H, Trauthwein H & Liese A (2006) Preparative enantioselective synthesis of benzoins and (R)-2-hydroxy-1-phenylpropanone using benzaldehyde lyase. J Mol Catal B: Enzym 38, 4347.
  • 34
    Hildebrand F, Kühl S, Pohl M, Vasic-Racki D, Müller M, Wandrey C & Lütz S (2007) The production of (R)-2-hydroxy-1-phenyl-propan-1-one derivatives by benzaldehyde lyase from Pseudomonas fluorescens in a continuously operated membrane reactor. Biotechnol Bioeng 96, 835843.
  • 35
    Kühl S, Zehentgruber D, Pohl M, Müller M & Lütz S (2007) Process development for enzyme catalysed asymmetric C–C-bond formation. Chem Eng Sci 62, 52015205.
  • 36
    Shanmuganathan S, Natalia D, van den Wittenboer A, Kohlmann C, Greiner L & Dominguez de María P (2010) Enzyme-catalyzed C–C bond formation using 2-methyltetrahydrofuran (2-MTHF) as (co)solvent: efficient and bio-based alternative to DMSO and MTBE. Green Chem 12, 22402245.
  • 37
    Ayhan P, Simsek I, Cifci B & Demir AS (2011) Benzaldehyde lyase catalyzed enantioselective self and cross condensation reactions of acetaldehyde derivatives. Org Biomol Chem 9, 26022605.
  • 38
    Shanmuganathan S, Natalia D, Greiner D & Dominguez de Maria P (2012) Oxidation-hydroxymethylation-reduction: one-pot three-step biocatalytic synthesis of optically active α-aryl vicinal diols. Green Chem 14, 9497.
  • 39
    Müller CR, Pérez-Sanchéz M & Domínguez de María P (2013) Benzaldehyde lyase-catalyzed diastereoselective C–C bond formation by simultaneous carboligation and kinetic resolution. Org Biomol Chem 11, 20002004.
  • 40
    Meyer D, Walter J, Kolter G, Pohl M, Müller M & Tittmann K (2011) Conversion of pyruvate decarboxylase into an enantioselective carboligase with biosynthetic potential. J Am Chem Soc 133, 36093616.
  • 41
    Rother D, Kolter G, Gerhards T, Berthold Siöberg CL, Gauchenova E, Knoll M, Pleiss J, Müller M, Schneider G & Pohl M (2011) (S)-Selective mixed benzoin condensation by structure-based design of the pyruvate decarboxylase from Acetobacter pasteurianus. ChemCatChem 3, 15871596.
  • 42
    Smit BA, Vlieg J, Engels WJM, Meijer L, Wouters JTM & Smit G (2005) Identification, cloning, and characterization of a Lactococcus lactis branched-chain alpha-keto acid decarboxylase involved in flavor formation. Appl Environ Microbiol 71, 303311.
  • 43
    Gocke D, Nguyen CL, Pohl M, Stillger T, Walter L & Müller M (2007) Branched-chain ketoacid decarboxylase from Lactococcus lactis (KdcA), a valuable thiamin diphosphate-dependent enzyme for asymmetric C–C bond formation. Adv Synth Catal 349, 14251435.
  • 44
    Fraas S, Steinbach AK, Tabbert A, Harder J, Ermler U, Tittmann K, Meyer A & Kroneck PMH (2009) Cyclohexane-1,2-dione hydrolase: a new tool to degrade alicyclic compounds. J Mol Catal B: Enzym 61, 4749.
  • 45
    Steinbach AK, Fraas S, Harder J, Tabbert A, Brinkmann H, Meyer A, Ermler U & Kroneck PM (2011) Cyclohexane-1,2-dione hydrolase from denitrifying Azoarcus sp. strain 22Lin, a novel member of the thiamine diphosphate enzyme family. J Bacteriol 193, 67606769.
  • 46
    Steinbach A, Fraas S, Harder J, Warkentin E, Kroneck PM & Ermler U (2012) Crystal structure of a ring-cleaving cyclohexane-1,2-dione hydrolase, a novel member of the thiamine diphosphate enzyme family. FEBS J 279, 12091219.
  • 47
    Kurutsch A, Richter M, Brecht V, Sprenger GA & Müller M (2009) MenD as a versatile catalyst for asymmetric synthesis. J Mol Catal B: Enzym 61, 5666.
  • 48
    Beigi M, Loschonsky S, Lehwald P, Brecht V, Andrade SL, Leeper FJ, Hummel W & Müller M (2013) alpha-Hydroxy-beta-keto acid rearrangement-decarboxylation: impact on thiamine diphosphate-dependent enzymatic transformations. Org Biomol Chem 11, 252256.
  • 49
    Beigi M, Waltzer S, Fries A, Eggeling L, Sprenger GA & Muller M (2013) TCA cycle involved enzymes SucA and Kgd, as well as MenD: efficient biocatalysts for asymmetric C–C bond formation. Org Lett 15, 452455.
  • 50
    Wagner T, Bellinzoni M, Wehenkel A, O'Hare HM & Alzari Pedro M (2011) Functional plasticity and allosteric regulation of α-ketoglutarate decarboxylase in central mycobacterial metabolism. Chem Biol 18, 10111020.
  • 51
    Chen H, Guo Z & Liu H-W (1998) Biosynthesis of yersiniose: attachment of the two-carbon branched-chain is catalyzed by a thiamine pyrophosphate-dependent flavoprotein. J Am Chem Soc 120, 1179611797.
  • 52
    Lehwald P, Richter M, Röhr C, Liu HW & Müller M (2010) Enantioselective intermolecular aldehyde-ketone cross-coupling through an enzymatic carboligation reaction. Angew Chem Int Ed 49, 23892392.
  • 53
    Kluger R & Tittmann K (2008) Thiamin diphosphate catalysis: enzymic and nonenzymic covalent intermediates. Chem Rev 108, 17971833.
  • 54
    Costelloe SJ, Ward JM & Dalby PA (2008) Evolutionary analysis of the TPP-dependent enzyme family. J Mol Evol 66, 3649.
  • 55
    Chipman D, Barak Z & Schloss JV (1998) Biosynthesis of 2-aceto-2-hydroxy acids: acetolactate synthases and acetohydroxyacid synthases. Biochim Biophys Acta 1385, 401419.
  • 56
    Bar-Ilan A, Balan V, Tittmann K, Golbik R, Vyazmensky M, Hübner G, Barak Z & Chipman DM (2001) Binding and activation of thiamin diphosphate in acetohydroxyacid synthase. Biochemistry 40, 1194611954.
  • 57
    Mosbacher TG, Müller M & Schulz GE (2005) Structure and mechanism of the ThDP-dependent benzaldehyde lyase from Pseudomonas fluorescens. FEBS J 272, 60676076.
  • 58
    Gonzales B & Vicuna R (1989) Benzaldehyde lyase, a novel thiamine PPi-requiring enzyme from Pseudomonas fluorescens Biovar I. J Bacteriol 171, 24012405.
  • 59
    Hegeman GD (1970) Benzoylformate decarboxylase (Pseudomonas putida). Meth Enzymol 17A, 674678.
  • 60
    Hasson MS, Muscate A, McLeish MJ, Polovnikova LS, Gerlt JA, Kenyon GL, Petsko GA & Ringe D (1998) The crystal structure of benzoylformate decarboxylase at 1.6 A resolution: diversity of catalytic residues in thiamin diphosphate-dependent enzymes. Biochemistry 37, 99189930.
  • 61
    Polovnikova ES, McLeish MJ, Sergienko EA, Burgner JT, Anderson NL, Bera AK, Jordan F, Kenyon GL & Hasson MS (2003) Structural and kinetic analysis of catalysis by a thiamin diphosphate-dependent enzyme, benzoylformate decarboxylase. Biochemistry 42, 18201830.
  • 62
    Dawes EA, Ribbons DW & Large PJ (1966) The route of ethanol formation in Zymomonas mobilis. Biochem J 98, 795803.
  • 63
    Dobritzsch D, König S, Schneider G & Lu G (1998) High resolution crystal structure of pyruvate decarboxylase from Zymomonas mobilis. Implications for substrate activation in pyruvate decarboxylases. J Biol Chem 273, 2019620204.
  • 64
    Raj KC, Ingram LO & Maupin-Furlow JA (2001) Pyruvate decarboxylase: a key enzyme for the oxidative metabolism of lactic acid by Acetobacter pasteurianus. Arch Microbiol 176, 443451.
  • 65
    Jiang M, Cao Y, Guo Z-F, Chen M, Chen X & Guo Z (2007) Menaquinone biosynthesis in Escherichia coli: identification of 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate as a novel intermediate and re-evaluation of MenD activity. Biochemistry 46, 1097910989.
  • 66
    Dawson A, Fyfe PK & Hunter WN (2008) Specificity and reactivity in menaquinone biosynthesis: the structure of Escherichia coli MenD (2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate synthase). J Mol Biol 384, 13531368.
  • 67
    Dawson A, Chen M, Fyfe PK, Guo Z & Hunter WN (2010) Structure and reactivity of Bacillus subtilis MenD catalyzing the first committed step in menaquinone biosynthesis. J Mol Biol 401, 253264.
  • 68
    Priyadarshi A, Kim EE & Hwang KY (2009) Structural and functional analysis of vitamin K2 synthesis protein MenD. Biochem Biophys Res Commun 388, 748751.
  • 69
    Racker E (1961) The Enzymes, Vol. 5. Academic Press, New York.
  • 70
    Littlechild JA, Turner NJ, Hobbs GR, Lilly MD, Rawas A & Watson H (1995) Crystallization and preliminary X-ray crystallographic data with Escherichia coli transketolase. Acta Crystallogr Biol Crystallogr 51, 10741076.
  • 71
    Asztalos P, Parthier C, Golbik R, Kleinschmidt M, Hübner G, Weiss MS, Friedemann R, Wille G & Tittmann K (2007) Strain and near attack conformers in enzymic thiamin catalysis: X-ray crystallographic snapshots of bacterial transketolase in covalent complex with donor ketoses xylulose 5-phosphate and fructose 6-phosphate, and in noncovalent complex with acceptor aldose ribose 5-phosphate. Biochemistry 46, 1203712052.
  • 72
    Lindqvist Y, Schneider G, Ermler U & Sundstrom M (1992) Three-dimensional structure of transketolase, a thiamine diphosphate dependent enzyme, at 2.5 A resolution. EMBO J 11, 23732379.
  • 73
    Fang M, Macova A, Hanson KL, Kos J & Palmer DRJ (2011) Using substrate analogues to probe the kinetic mechanism and active site of Escherichia coli MenD. Biochemistry 50, 87128721.
  • 74
    Kneen MM, Pogozheva ID, Kenyon GL & McLeish MJ (2005) Exploring the active site of benzaldehyde lyase by modeling and mutagenesis. Biochim Biophys Acta – Proteins Proteomics 1753, 263271.
  • 75
    Brandt GS, Kneen MM, Petsko GA, Ringe D & McLeish MJ (2010) Active-site engineering of benzaldehyde lyase shows that a point mutation can confer both new reactivity and susceptibility to mechanism-based inhibition. J Am Chem Soc 132, 438439.
  • 76
    Demir AS, Pohl M, Janzen E & Müller M (2001) Enantioselective synthesis of hydroxy ketones through cleavage and formation of acyloin linkage. Enzymatic kinetic resolution via C-C bond cleavage. J Chem Soc Perkin Trans 1, 633635.
  • 77
    Hildebrandt G & Klavehn W (1932) Verfahren zur Herstellung von 1-l-Phenyl-2-methylaminopropan-1-ol, Germany. Deutsches Reichspatent 548, 459.
  • 78
    Meyer D, Neumann P, Parthier C, Friedemann R, Nemeria N, Jordan F & Tittmann K (2010) Double duty for a conserved glutamate in pyruvate decarboxylase: evidence of the participation in stereoelectronically controlled decarboxylation and in protonation of the nascent carbanion/enamine intermediate. Biochemistry 49, 81978212.
  • 79
    Baykal A, Chakraborty S, Dodoo A & Jordan F (2006) Synthesis with good enantiomeric excess of both enantiomers of alpha-ketols and acetolactates by two thiamin diphosphate-dependent decarboxylases. Bioorg Chem 34, 380393.
  • 80
    Wilcocks R, Ward OP, Collins S, Dewdney NJ, Hong Y & Prosen E (1992) Acyloin formation by benzoylformate decarboxylase from Pseudomonas putida. Appl Environ Microbiol 58, 16991704.
  • 81
    Iding H, Dünnwald T, Greiner L, Liese A, Müller M, Siegert P, Grötzinger J, Demir AS & Pohl M (2000) Benzoylformate decarboxylase from Pseudomonas putida as stable catalyst for the synthesis of chiral 2-hydroxy ketones. Chem Eur J 6, 14831495.
  • 82
    Demir AS, Dünnwald T, Iding H, Pohl M & Müller M (1999) Asymmetric benzoin reaction catalyzed by benzoylformate decarboxylase. Tetrahedron: Asymmetry 10, 47694774.
  • 83
    Dünnwald T, Demir AS, Siegert P, Pohl M & Müller M (2000) Enantioselective synthesis of (S)-2-hydroxypropanone derivatives by benzoylformate decarboxylase catalyzed C–C bond formation. Eur J Org Chem, 21612170.
  • 84
    Gocke D, Graf T, Brosi H, Frindi-Wosch I, Walter L, Müller M & Pohl M (2009) Comparative characterisation of thiamin diphosphate-dependent decarboxylases. J Mol Catal B:Enzym 61, 3035.
  • 85
    Gerhards T, Mackfeld U, Bocola M, von Lieres E, Wiechert W, Pohl M & Rother D (2012) Influence of organic solvents on enzymatic asymmetric carboligations. Adv Synth Catal 354, 28052820.
  • 86
    Wilcocks R & Ward OP (1992) Factors effecting 2-hydroxypropiophenone formation by benzoylformate decarboxylase from Pseudomonas putida. Biotech Bioeng 39, 10581063.
  • 87
    Demir AS, Ayan P, Igdir AC & Guygu AN (2004) Enzyme catalyzed hydroxymethylation of aromatic aldehydes with formaldehyde. Synthesis of hydroxyacetophenones and (S)-benzoins. Tetrahedron 60, 65096512.
  • 88
    Bruhn H, Pohl M, Grötzinger J & Kula MR (1995) The replacement of Trp392 by alanine influences the decarboxylase/carboligase activity and stability of pyruvate decarboxylase from Zymomonas mobilis. Eur J Biochem 234, 650655.
  • 89
    Goetz G, Iwan P, Hauer B, Breuer M & Pohl M (2001) Continuous production of (R)-phenylacetylcarbinol in an enzyme-membrane reactor using a potent mutant of pyruvate decarboxylase from Zymomonas mobilis. Biotechnol Bioeng 74, 317325.
  • 90
    Engel S, Vyazmensky M, Berkovich D, Barak Z & Chipman DM (2004) Substrate range of acetohydroxy acid synthase I from Escherichia coli in the stereoselective synthesis of alpha-hydroxy ketones. Biotechnol Bioeng 88, 825831.
  • 91
    Westphal R, Waltzer S, Mackfeld U, Widmann M, Rother D, Pleiss J, Beigi M, Müller M & Pohl M (2013) (S)-Selective MenD variants from Escherichia coli provide access to new functionalized chiral α-hydroxy ketones. Chem Commun 49, 20612063.
  • 92
    Westphal R, Hahn D, Mackfeld U, Waltzer S, Beigi M, Widmann M, Vogel C, Pleiss J, Müller M & Pohl M (2013) Tailoring (S)-selectivity of MenD from Escherichia coli. ChemCatChem, doi:10.1002/cctc.201300318.
  • 93
    Schmitz C (2012) Untersuchung der Stereoselektivität und des Substratspektrums von AHAS I&II aus Escherichia coli. Fachhochschule Aachen, Jülich.
  • 94
    Pang SS, Duggleby RG & Guddat LW (2002) Crystal structure of yeast acetohydroxyacid synthase: a target for herbicidal inhibitors. J Mol Biol 317, 249262.
  • 95
    Vogel C, Widmann M, Pohl M & Pleiss J (2012) A standard numbering scheme for thiamine diphosphate-dependent decarboxylases. BMC Biochem 13, 24.
  • 96
    Blanco F, Kelly B, Alkorta I, Rozas I & Elguero J (2011) Cation–pi interactions: Complexes of guanidinium and simple aromatic systems. Chem Phys Lett 511, 129134.
  • 97
    Stillger T, Pohl M, Wandrey C & Liese A (2006) Reaction engineering of benzaldehyde lyase catalyzing enantioselective C–C bond formation. Org Proc Res Dev 10, 11721177.
  • 98
    Kokova M, Zavrel M, Tittmann K, Spiess AC & Pohl M (2009) Investigating the carboligase activity of thiamine diphosphate-dependent enzymes using kinetic modeling and NMR spectroscopy. J Mol Catal B:Enzym 61, 7379.
  • 99
    Janzen E, Müller M, Kolter-Jung D, Kneen MM, McLeish MJ & Pohl M (2006) Characterization of benzaldehyde lyase from Pseudomonas fluorescens – a versatile enzyme for asymmetric C–C-bond formation. Bioorg Chem 34, 345361.
  • 100
    Natalia D, Greiner L, Leitner W & Ansorge-Schumacher MB (2012) Stability, activity, and selectivity of benzaldehyde lyase in supercritical fluids. J Supercrit Fluids 62, 173177.
  • 101
    Srere P, Cooper JR, Tabachnick M & Racker E (1958) The oxidative pentose phosphate cycle. I. Preparation of substrates and enzymes. Arch Bioch Biophys 74, 295305.
  • 102
    Villafranca JJ & Axelrod B (1971) Heptulose synthesis from nonphosphorylated aldoses and ketoses by spinach transketolase. J Biol Chem 246, 31263131.
  • 103
    Bolte J, Demuynck C & Samaki H (1987) Utilisation of enzymes in organic chemistry – transketolase catalyzed synthesis of ketoses. Tetrahedron Lett 28, 55255528.
  • 104
    Myles DC, Andrulis PJ III & Whitesides GM (1991) A transketolase-based synthesis of (+)-exo-brevicomin. Tetrahedron Lett 32, 48354838.
  • 105
    Kobori Y, Myles DC & Whitesides GM (1992) Substrate-specificity and carbohydrate synthesis using transketolase. J Org Chem 57, 58995907.
  • 106
    Hecquet L, Bolte J & Demuynck C (1994) Chemoenzymatic synthesis of 6-deoxy-D-fructose and 6-deoxy-L-sorbose using transketolase. Tetrahedron 50, 86778684.
  • 107
    Nikkola M, Lindqvist Y & Schneider G (1994) Refined structure of transketolase from Saccharomyces cerevisiae at 2.0 A resolution. J Mol Biol 238, 387404.
  • 108
    Mitschke L, Parthier C, Schröder-Tittmann K, Coy J, Ludtke S & Tittmann K (2010) The crystal structure of human transketolase and new insights into its mode of action. J Biol Chem 285, 3155931570.
  • 109
    French C & Ward JM (1995) Improved production and stability of Escherichia coli recombinants expressing transketolase for large-scale biotransformation. Biotechnol Lett 17, 247252.
  • 110
    Hobbs GR, Lilly MD, Turner NJ, Ward JM, Willets AJ & Woodley JM (1993) Enzyme-catalyzed carbon carbon bond formation – use of transketolase from Escherichia coli. J Chem Soc Perkin Trans 1, 165166.
  • 111
    Aucamp JP, Martinez-Torres RJ, Hibbert EG & Dalby PA (2008) A microplate-based evaluation of complex denaturation pathways: structural stability of Escherichia coli transketolase. Biotechnol Bioeng 99, 13031310.
  • 112
    Schörken U, Sahm H & Sprenger G (1996) Substrate specificity, site-directed mutagenesis and modelling of the substrate channel and preliminary X-ray crystallographic data of E. coli transketolase. In Biochemistry and Physiology of Thiamine Diphosphate Enzymes. (Bisswanger H & Schellenberger A, eds), pp. 543554. Intemann, Prien.
  • 113
    Smith MEB, Smithies K, Senussi T, Dalby PA & Hailes HC (2006) The first mimetic of the transketolase reaction. Eur J Org Chem, 11211123.
  • 114
    Smith MEB, Kaulmann U, Ward JM & Hailes HC (2006) A colorimetric assay for screening transketolase activity. Bioorg Med Chem 14, 70627065.
  • 115
    Galman JL & Hailes HC (2009) Application of a modified Mosher's method for the determination of enantiomeric ratio and absolute configuration at C-3 of chiral 1,3-dihydroxy ketones. Tetrahedron: Asymmetry 20, 18281831.
  • 116
    Hibbert EG, Senussi T, Smith MEB, Costelloe SJ, Ward JM, Hailes HC & Dalby PA (2008) Directed evolution of transketolase substrate specificity towards an aliphatic aldehyde. J Biotechnol 134, 240245.
  • 117
    Nilsson U, Hecquet L, Gefflaut T, Guerard C & Schneider G (1998) Asp477 is a determinant of the enantioselectivity in yeast transketolase. FEBS Lett 424, 4952.
  • 118
    Strafford J, Payongsri P, Hibbert EG, Morris P, Batth SS, Steadman D, Smith MEB, Ward JM, Hailes HC & Dalby PA (2012) Directed evolution to re-adapt a co-evolved network within an enzyme. J Biotechnol 157, 237245.
  • 119
    Cazares A, Galman JL, Crago LG, Smith MEB, Strafford J, Rios-Solis L, Lye GJ, Dalby PA & Hailes HC (2010) Non-α-hydroxylated aldehydes with evolved transketolase enzymes. Org Biomol Chem 8, 13011309.
  • 120
    Yi D, Devamani T, Abdoul-Zabar J, Charmantray F, Helaine V, Hecquet L & Fessner W-D (2012) A pH-based high-throughput assay for transketolase: fingerprinting of substrate tolerance and quantitative kinetics. ChemBioChem 13, 22902300.
  • 121
    Smith MEB, Chen BH, Hibbert EG, Kaulmann U, Smithies K, Galman JL, Baganz F, Dalby PA, Hailes HC, Lye GJ et al. (2010) A multi-disciplinary approach toward the rapid and preparative scale biocatalytic synthesis of chiral amino alcohols: a concise transketolase/ω-transaminase-mediated synthesis of (2S,3S)-2-aminopentane-1,3-diol. Org Proc Res Dev 14, 99107.
  • 122
    O'Sullivan B, Al-Bahrani H, Lawrence J, Campos M, Cazares A, Baganz F, Wohlgemuth R, Hailes HC & Szita N (2012) Modular microfluidic reactor and inline filtration system for the biocatalytic synthesis of chiral metabolites. J Mol Catal B: Enzym 77, 18.
  • 123
    Galman JL, Steadman D, Bacon S, Morris P, Smith MEB, Ward JM, Dalby PA & Hailes HC (2010) α, α′-Dihydroxyketone formation using aromatic and heteroaromatic aldehydes with evolved transketolase enzymes. Chem Commun 46, 76087610.
  • 124
    Morris KG, Smith MEB, Turner NJ, Lilly MD, Mitra RK & Woodley JM (1996) Transketolase from Escherichia coli: a practical procedure for using the biocatalyst for asymmetric carbon–carbon bond synthesis. Tetrahedron: Asymmetry 7, 21852188.