SEARCH

SEARCH BY CITATION

References

  • 1
    Bayer EA, Belaich JP, Shoham Y & Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58, 521554.
  • 2
    Fontes CM & Gilbert HJ (2010) Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem 79, 655681.
  • 3
    Blouzard JC, Coutinho PM, Fierobe HP, Henrissat B, Lignon S, Tardif C, Pages S & de Philip P (2010) Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses. Proteomics 10, 541554.
  • 4
    Gal L, Pages S, Gaudin C, Belaich A, Reverbel-Leroy C, Tardif C & Belaich JP (1997) Characterization of the cellulolytic complex (cellulosome) produced by Clostridium cellulolyticum. Appl Environ Microbiol 63, 903909.
  • 5
    Sakka M, Goto M, Fujino T, Fujino E, Karita S, Kimura T & Sakka K (2010) Analysis of a Clostridium josui cellulase gene cluster containing the man5A gene and characterization of recombinant Man5A. Biosci Biotechnol Biochem 74, 20772082.
  • 6
    Jindou S, Soda A, Karita S, Kajino T, Beguin P, Wu JH, Inagaki M, Kimura T, Sakka K & Ohmiya K (2004) Cohesin–dockerin interactions within and between Clostridium josui and Clostridium thermocellum: binding selectivity between cognate dockerin and cohesin domains and species specificity. J Biol Chem 279, 98679874.
  • 7
    Pohlschroder M, Leschine SB & Canale-Parola E (1994) Multicomplex cellulase–xylanase system of Clostridium papyrosolvens C7. J Bacteriol 176, 7076.
  • 8
    Tamaru Y, Miyake H, Kuroda K, Nakanishi A, Matsushima C, Doi RH & Ueda M (2011) Comparison of the mesophilic cellulosome-producing Clostridium cellulovorans genome with other cellulosome-related clostridial genomes. Microb Biotechnol 4, 6473.
  • 9
    Tamaru Y, Miyake H, Kuroda K, Nakanishi A, Kawade Y, Yamamoto K, Uemura M, Fujita Y, Doi RH & Ueda M (2010) Genome sequence of the cellulosome-producing mesophilic organism Clostridium cellulovorans 743B. J Bacteriol 192, 901902.
  • 10
    Doi RH & Tamaru Y (2001) The Clostridium cellulovorans cellulosome: an enzyme complex with plant cell wall degrading activity. Chem Rec 1, 2432.
  • 11
    Pages S, Belaich A, Fierobe HP, Tardif C, Gaudin C & Belaich JP (1999) Sequence analysis of scaffolding protein CipC and ORFXp, a new cohesin-containing protein in Clostridium cellulolyticum: comparison of various cohesin domains and subcellular localization of ORFXp. J Bacteriol 181, 18011810.
  • 12
    Shoseyov O & Doi RH (1990) Essential 170-kDa subunit for degradation of crystalline cellulose by Clostridium cellulovorans cellulase. Proc Natl Acad Sci USA 87, 21922215.
  • 13
    Bayer EA, Lamed R, White BA & Flint HJ (2008) From cellulosomes to cellulosomics. Chem Rec 8, 364377.
  • 14
    Pages S, Belaich A, Tardif C, Reverbel-Leroy C, Gaudin C & Belaich JP (1996) Interaction between the endoglucanase CelA and the scaffolding protein CipC of the Clostridium cellulolyticum cellulosome. J Bacteriol 178, 22792286.
  • 15
    Rincon MT, Dassa B, Flint HJ, Travis AJ, Jindou S, Borovok I, Lamed R, Bayer EA, Henrissat B, Coutinho PM et al. (2010) Abundance and diversity of dockerin-containing proteins in the fiber-degrading rumen bacterium, Ruminococcus flavefaciens FD-1. PLoS ONE 5, e12476.
  • 16
    Dassa B, Borovok I, Lamed R, Henrissat B, Coutinho P, Hemme CL, Huang Y, Zhou J & Bayer EA (2012) Genome-wide analysis of Acetivibrio cellulolyticus provides a blueprint of an elaborate cellulosome system. BMC Genomics 13, 210.
  • 17
    Fierobe HP, Mingardon F, Mechaly A, Belaich A, Rincon MT, Pages S, Lamed R, Tardif C, Belaich JP & Bayer EA (2005) Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin. J Biol Chem 280, 1632516334.
  • 18
    Fierobe HP, Pages S, Belaich A, Champ S, Lexa D & Belaich JP (1999) Cellulosome from Clostridium cellulolyticum: molecular study of the dockerin/cohesin interaction. Biochemistry 38, 1282212832.
  • 19
    Pinheiro BA, Proctor MR, Martinez-Fleites C, Prates JA, Money VA, Davies GJ, Bayer EA, Fontes CM, Fierobe HP & Gilbert HJ (2008) The Clostridium cellulolyticum dockerin displays a dual binding mode for its cohesin partner. J Biol Chem 283, 1842218430.
  • 20
    Pinheiro BA, Gilbert HJ, Sakka K, Fernandes VO, Prates JA, Alves VD, Bolam DN, Ferreira LM & Fontes CM (2009) Functional insights into the role of novel type I cohesin and dockerin domains from Clostridium thermocellum. Biochem J 424, 375384.
  • 21
    Perret S, Belaich A, Fierobe HP, Belaich JP & Tardif C (2004) Towards designer cellulosomes in clostridia: mannanase enrichment of the cellulosomes produced by Clostridium cellulolyticum. J Bacteriol 186, 65446552.
  • 22
    Fendri I, Tardif C, Fierobe HP, Lignon S, Valette O, Pages S & Perret S (2009) The cellulosomes from Clostridium cellulolyticum: identification of new components and synergies between complexes. FEBS J 276, 30763086.
  • 23
    Fierobe HP, Bayer EA, Tardif C, Czjzek M, Mechaly A, Belaich A, Lamed R, Shoham Y & Belaich JP (2002) Degradation of cellulose substrates by cellulosome chimeras. Substrate targeting versus proximity of enzyme components. J Biol Chem 277, 4962149630.
  • 24
    Fierobe HP, Mechaly A, Tardif C, Belaich A, Lamed R, Shoham Y, Belaich JP & Bayer EA (2001) Design and production of active cellulosome chimeras. Selective incorporation of dockerin-containing enzymes into defined functional complexes. J Biol Chem 276, 2125721261.
  • 25
    Morais S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y, Wilson DB & Bayer EA (2010) Cellulase–xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. MBio 1, e00285-10.
  • 26
    Morais S, Heyman A, Barak Y, Caspi J, Wilson DB, Lamed R, Shoseyov O & Bayer EA (2010) Enhanced cellulose degradation by nano-complexed enzymes: synergism between a scaffold-linked exoglucanase and a free endoglucanase. J Biotechnol 147, 205211.
  • 27
    Morais S, Morag E, Barak Y, Goldman D, Hadar Y, Lamed R, Shoham Y, Wilson DB & Bayer EA (2012) Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes. MBio 3, e00508e00512.
  • 28
    Fierobe HP, Gaudin C, Belaich A, Loutfi M, Faure E, Bagnara C, Baty D & Belaich JP (1991) Characterization of endoglucanase A from Clostridium cellulolyticum. J Bacteriol 173, 79567962.
  • 29
    Gal L, Gaudin C, Belaich A, Pages S, Tardif C & Belaich JP (1997) CelG from Clostridium cellulolyticum: a multidomain endoglucanase acting efficiently on crystalline cellulose. J Bacteriol 179, 65956601.
  • 30
    Reverbel-Leroy C, Pages S, Belaich A, Belaich JP & Tardif C (1997) The processive endocellulase CelF, a major component of the Clostridium cellulolyticum cellulosome: purification and characterization of the recombinant form. J Bacteriol 179, 4652.
  • 31
    Molinier AL, Nouailler M, Valette O, Tardif C, Receveur-Bréchot V & Fierobe HP (2011) Synergy, structure and conformational flexibility of hybrid cellulosomes displaying various inter-cohesins linkers. J Mol Biol 405, 143157.
  • 32
    Dasgupta PK (2008) Chromatographic peak resolution using Microsoft Excel Solver. The merit of time shifting input arrays. J Chromatogr A 1213, 5055.
  • 33
    Yaron S, Morag E, Bayer EA, Lamed R & Shoham Y (1995) Expression, purification and subunit-binding properties of cohesins 2 and 3 of the Clostridium thermocellum cellulosome. FEBS Lett 360, 121124.
  • 34
    Abdou L, Boileau C, de Philip P, Pages S, Fierobe HP & Tardif C (2008) Transcriptional regulation of the Clostridium cellulolyticum cip-cel operon: a complex mechanism involving a catabolite-responsive element. J Bacteriol 190, 14991506.
  • 35
    Kruus K, Wang WK, Ching J & Wu JH (1995) Exoglucanase activities of the recombinant Clostridium thermocellum CelS, a major cellulosome component. J Bacteriol 177, 16411644.
  • 36
    Celik H, Blouzard JC, Voigt B, Becher D, Trotter V, Fierobe HP, Tardif C, Pages S & de Philip P (2013) A two-component system (XydS/R) controls the expression of genes encoding CBM6-containing proteins in response to straw in Clostridium cellulolyticum. PLoS ONE 8, e56063.
  • 37
    Bomble YJ, Beckham GT, Matthews JF, Nimlos MR, Himmel ME & Crowley MF (2011) Modeling the self-assembly of the cellulosome enzyme complex. J Biol Chem 286, 56145623.
  • 38
    Hammel M, Fierobe HP, Czjzek M, Finet S & Receveur-Brechot V (2004) Structural insights into the mechanism of formation of cellulosomes probed by small angle X-ray scattering. J Biol Chem 279, 5598555994.
  • 39
    Hammel M, Fierobe HP, Czjzek M, Kurkal V, Smith JC, Bayer EA, Finet S & Receveur-Brechot V (2005) Structural basis of cellulosome efficiency explored by small angle X-ray scattering. J Biol Chem 280, 3856238568.
  • 40
    Carvalho AL, Dias FM, Prates JA, Nagy T, Gilbert HJ, Davies GJ, Ferreira LM, Romao MJ & Fontes CM (2003) Cellulosome assembly revealed by the crystal structure of the cohesin–dockerin complex. Proc Natl Acad Sci USA 100, 1380913814.
  • 41
    Maamar H, Valette O, Fierobe HP, Belaich A, Belaich JP & Tardif C (2004) Cellulolysis is severely affected in Clostridium cellulolyticum strain cipCMut1. Mol Microbiol 51, 589598.