SEARCH

SEARCH BY CITATION

References

  • 1
    Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, Gu J, Rosenfeld MA, Pavan WJ, Krizman DB et al. (1997) Niemann–Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277, 228231.
  • 2
    Loftus SK, Morris JA, Carstea ED, Gu JZ, Cummings C, Brown A, Ellison J, Ohno K, Rosenfeld MA, Tagle DA et al. (1997) Murine model of Niemann–Pick C disease: mutation in a cholesterol homeostasis gene. Science 277, 232235.
  • 3
    Neufeld EB, Wastney M, Patel S, Suresh S, Cooney AM, Dwyer NK, Roff CF, Ohno K, Morris JA, Carstea ED et al. (1999) The Niemann–Pick C1 protein resides in a vesicular compartment linked to retrograde transport of multiple lysosomal cargo. J Biol Chem 274, 96279635.
  • 4
    Pentchev PG (2004) Niemann–Pick C research from mouse to gene. Biochim Biophys Acta 1685, 37.
  • 5
    Vanier MT (2013) Niemann–Pick diseases. Handb Clin Neurol 113, 17171721.
  • 6
    Wraith JE, Baumgartner MR, Bembi B, Covanis A, Levade T, Mengel E, Pineda M, Sedel F, Topcu M, Vanier MT et al. (2009) Recommendations on the diagnosis and management of Niemann–Pick disease type C. Mol Genet Metab 98, 152165.
  • 7
    Kwon HJ, Abi-Mosleh L, Wang ML, Deisenhofer J, Goldstein JL, Brown MS & Infante RE (2009) Structure of N–terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell 137, 12131224.
  • 8
    Xu S, Benoff B, Liou HL, Lobel P & Stock AM (2007) Structural basis of sterol binding by NPC2, a lysosomal protein deficient in Niemann–Pick type C2 disease. J Biol Chem 282, 2352523531.
  • 9
    Infante RE, Wang ML, Radhakrishnan A, Kwon HJ, Brown MS & Goldstein JL (2008) NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc Natl Acad Sci USA 105, 1528715292.
  • 10
    Wang ML, Motamed M, Infante RE, Abi-Mosleh L, Kwon HJ, Brown MS & Goldstein JL (2010) Identification of surface residues on Niemann–Pick C2 essential for hydrophobic handoff of cholesterol to NPC1 in lysosomes. Cell Metab 12, 166173.
  • 11
    Xie X, Brown MS, Shelton JM, Richardson JA, Goldstein JL & Liang G (2011) Amino acid substitution in NPC1 that abolishes cholesterol binding reproduces phenotype of complete NPC1 deficiency in mice. Proc Natl Acad Sci USA 108, 1533015335.
  • 12
    Deffieu MS & Pfeffer SR (2011) Niemann–Pick type C1 function requires lumenal domain residues that mediate cholesterol-dependent NPC2 binding. Proc Natl Acad Sci USA 108, 1893218936.
  • 13
    Babalola JO, Wendeler M, Breiden B, Arenz C, Schwarzmann G, Locatelli-Hoops S & Sandhoff K (2007) Development of an assay for the intermembrane transfer of cholesterol by Niemann–Pick C2 protein. Biol Chem 388, 617626.
  • 14
    Ohgane K, Karaki F, Dodo K & Hashimoto Y (2013) Discovery of oxysterol-derived pharmacological chaperones for NPC1: implication for the existence of second sterol-binding site. Chem Biol 20, 391402.
  • 15
    Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, Kuehne AI, Kranzusch PJ, Griffin AM, Ruthel G et al. (2011) Ebola virus entry requires the cholesterol transporter Niemann–Pick C1. Nature 477, 340343.
  • 16
    Lloyd-Evans E & Platt FM (2010) Lipids on trial: the search for the offending metabolite in Niemann–Pick type C disease. Traffic 11, 419428.
  • 17
    Ko DC, Gordon MD, Jin JY & Scott MP (2001) Dynamic movements of organelles containing Niemann–Pick C1 protein: NPC1 involvement in late endocytic events. Mol Biol Cell 12, 601614.
  • 18
    Liu B, Li H, Repa JJ, Turley SD & Dietschy JM (2008) Genetic variations and treatments that affect the lifespan of the NPC1 mouse. J Lipid Res 49, 663669.
  • 19
    Davidson CD, Ali NF, Micsenyi MC, Stephney G, Renault S, Dobrenis K, Ory DS, Vanier MT & Walkley SU (2009) Chronic cyclodextrin treatment of murine Niemann–Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression. PLoS One 4, e6951.
  • 20
    Liu B, Turley SD, Burns DK, Miller AM, Repa JJ & Dietschy JM (2009) Reversal of defective lysosomal transport in NPC disease ameliorates liver dysfunction and neurodegeneration in the npc1–/ mouse. Proc Natl Acad Sci USA 106, 23772382.
  • 21
    Taylor AM, Liu B, Mari Y & Repa JJ (2012) Cyclodextrin mediates rapid changes in lipid balance in Npc1–/ mice without carrying cholesterol through the bloodstream. J Lipid Res 53, 23312342.
  • 22
    Fan M, Sidhu R, Fujiwara H, Tortelli B, Zhang J, Davidson C, Walkley SU, Bagel JH, Vite C, Yanjanin NM et al. (2013) Identification of Niemann–Pick C1 (NPC1) disease biomarkers through sphingolipid profiling. J Lipid Res, doi:jlr.M040618 [pii]10.1194/jlr.M040618.
  • 23
    Patterson MC, Di Bisceglie AM, Higgins JJ, Abel RB, Schiffmann R, Parker CC, Argoff CE, Grewal RP, Yu K, Pentchev PG et al. (1993) The effect of cholesterol-lowering agents on hepatic and plasma cholesterol in Niemann–Pick disease type C. Neurology 43, 6164.
  • 24
    Erickson RP, Garver WS, Camargo F, Hossain GS & Heidenreich RA (2000) Pharmacological and genetic modifications of somatic cholesterol do not substantially alter the course of CNS disease in Niemann–Pick C mice. J Inherit Metab Dis 23, 5462.
  • 25
    Somers KL, Brown DE, Fulton R, Schultheiss PC, Hamar D, Smith MO, Allison R, Connally HE, Just C, Mitchell TW et al. (2001) Effects of dietary cholesterol restriction in a feline model of Niemann–Pick type C disease. J Inherit Metab Dis 24, 427436.
  • 26
    Roff CF, Goldin E, Comly ME, Cooney A, Brown A, Vanier MT, Miller SP, Brady RO & Pentchev PG (1991) Type C Niemann–Pick disease: use of hydrophobic amines to study defective cholesterol transport. Dev Neurosci 13, 315319.
  • 27
    Lloyd-Evans E, Morgan AJ, He X, Smith DA, Elliot-Smith E, Sillence DJ, Churchill GC, Schuchman EH, Galione A & Platt FM (2008) Niemann–Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med 14, 12471255.
  • 28
    Zervas M, Somers KL, Thrall MA & Walkley SU (2001) Critical role for glycosphingolipids in Niemann–Pick disease type C. Curr Biol 11, 12831287.
  • 29
    te Vruchte D, Lloyd-Evans E, Veldman RJ, Neville DC, Dwek RA, Platt FM, van Blitterswijk WJ & Sillence DJ (2004) Accumulation of glycosphingolipids in Niemann–Pick C disease disrupts endosomal transport. J Biol Chem 279, 2616726175.
  • 30
    Stein VM, Crooks A, Ding W, Prociuk M, O'Donnell P, Bryan C, Sikora T, Dingemanse J, Vanier MT, Walkley SU et al. (2012) Miglustat improves purkinje cell survival and alters microglial phenotype in feline Niemann–Pick disease type C. J Neuropathol Exp Neurol 71, 434448.
  • 31
    Patterson MC, Vecchio D, Prady H, Abel L & Wraith JE (2007) Miglustat for treatment of Niemann–Pick C disease: a randomised controlled study. Lancet Neurol 6, 765772.
  • 32
    Wraith JE, Vecchio D, Jacklin E, Abel L, Chadha-Boreham H, Luzy C, Giorgino R & Patterson MC (2010) Miglustat in adult and juvenile patients with Niemann–Pick disease type C: long-term data from a clinical trial. Mol Genet Metab 99, 351357.
  • 33
    Liu Y, Wu YP, Wada R, Neufeld EB, Mullin KA, Howard AC, Pentchev PG, Vanier MT, Suzuki K & Proia RL (2000) Alleviation of neuronal ganglioside storage does not improve the clinical course of the Niemann–Pick C disease mouse. Hum Mol Genet 9, 10871092.
  • 34
    Rosenbaum AI, Zhang G, Warren JD & Maxfield FR (2010) Endocytosis of β–cyclodextrins is responsible for cholesterol reduction in Niemann–Pick type C mutant cells. Proc Natl Acad Sci USA 107, 54775482.
  • 35
    Matsuo M, Togawa M, Hirabaru K, Mochinaga S, Narita A, Adachi M, Egashira M, Irie T & Ohno K (2013) Effects of cyclodextrin in two patients with Niemann–Pick type C disease. Mol Genet Metab 108, 7681.
  • 36
    Repa JJ, Li H, Frank-Cannon TC, Valasek MA, Turley SD, Tansey MG & Dietschy JM (2007) Liver X receptor activation enhances cholesterol loss from the brain, decreases neuroinflammation, and increases survival of the NPC1 mouse. J Neurosci 27, 1447014480.
  • 37
    Park WD, O'Brien JF, Lundquist PA, Kraft DL, Vockley CW, Karnes PS, Patterson MC & Snow K (2003) Identification of 58 novel mutations in Niemann–Pick disease type C: correlation with biochemical phenotype and importance of PTC1-like domains in NPC1. Hum Mutat 22, 313325.
  • 38
    Gelsthorpe ME, Baumann N, Millard E, Gale SE, Langmade SJ, Schaffer JE & Ory DS (2008) Niemann–Pick type C1 I1061T mutant encodes a functional protein that is selected for endoplasmic reticulum-associated degradation due to protein misfolding. J Biol Chem 283, 82298236.
  • 39
    Pipalia NH, Cosner CC, Huang A, Chatterjee A, Bourbon P, Farley N, Helquist P, Wiest O & Maxfield FR (2011) Histone deacetylase inhibitor treatment dramatically reduces cholesterol accumulation in Niemann–Pick type C1 mutant human fibroblasts. Proc Natl Acad Sci USA 108, 56205625.
  • 40
    Munkacsi AB, Chen FW, Brinkman MA, Higaki K, Gutierrez GD, Chaudhari J, Layer JV, Tong A, Bard M, Boone C et al. (2011) An ‘exacerbate-reverse’ strategy in yeast identifies histone deacetylase inhibition as a correction for cholesterol and sphingolipid transport defects in human Niemann–Pick type C disease. J Biol Chem 286, 2384223851.
  • 41
    Kazantsev AG & Thompson LM (2008) Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 7, 854868.
  • 42
    Haberland M, Montgomery RL & Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10, 3242.
  • 43
    Fischer A, Sananbenesi F, Mungenast A & Tsai LH (2010) Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol Sci 31, 605617.
  • 44
    Spiegel S, Milstien S & Grant S (2012) Endogenous modulators and pharmacological inhibitors of histone deacetylases in cancer therapy. Oncogene 31, 537551.
  • 45
    Lombardi PM, Cole KE, Dowling DP & Christianson DW (2011) Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes. Curr Opin Struct Biol 21, 735743.
  • 46
    Hait NC, Allegood J, Maceyka M, Strub GM, Harikumar KB, Singh SK, Luo C, Marmorstein R, Kordula T, Milstien S et al. (2009) Regulation of histone acetylation in the nucleus by sphingosine-1–phosphate. Science 325, 12541257.
  • 47
    Spiegel S & Milstien S (2003) Sphingosine-1–phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4, 397407.
  • 48
    Porter FD, Scherrer DE, Lanier MH, Langmade SJ, Molugu V, Gale SE, Olzeski D, Sidhu R, Dietzen DJ, Fu R et al. (2010) Cholesterol oxidation products are sensitive and specific blood-based biomarkers for Niemann–Pick C1 disease. Sci Transl Med 2, 56ra81.