• 1
    Poole LB & Nelson KJ (2008) Discovering mechanisms of signaling-mediated cysteine oxidation. Curr Opin Chem Biol 12, 1824.
  • 2
    Wani R, Qian J, Yin L, Bechtold E, King SB, Poole LB, Paek E, Tsang AW & Furdui CM (2011) Isoform-specific regulation of Akt by PDGF-induced reactive oxygen species. Proc Natl Acad Sci USA 108, 1055010555.
  • 3
    Wani R, Bharathi NS, Field J, Tsang AW & Furdui CM (2011) Oxidation of Akt2 kinase promotes cell migration and regulates G1–S transition in the cell cycle. Cell Cycle 10, 32633268.
  • 4
    Saurin AT, Neubert H, Brennan JP & Eaton P (2004) Widespread sulfenic acid formation in tissues in response to hydrogen peroxide. Proc Natl Acad Sci USA 101, 1798217987.
  • 5
    Paulsen CE, Truong TH, Garcia FJ, Homann A, Gupta V, Leonard SE & Carroll KS (2012) Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat Chem Biol 8, 5764.
  • 6
    Hansen RE, Roth D & Winther JR (2009) Quantifying the global cellular thiol-disulfide status. Proc Natl Acad Sci USA 106, 422427.
  • 7
    Benitez LV & Allison WS (1974) The inactivation of the acyl phosphatase activity catalyzed by the sulfenic acid form of glyceraldehyde 3-phosphate dehydrogenase by dimedone and olefins. J Biol Chem 249, 62346243.
  • 8
    Poole LB, Klomsiri C, Knaggs SA, Furdui CM, Nelson KJ, Thomas MJ, Fetrow JS, Daniel LW & King SB (2007) Fluorescent and affinity-based tools to detect cysteine sulfenic acid formation in proteins. Bioconjug Chem 18, 20042017.
  • 9
    Seo YH & Carroll KS (2009) Facile synthesis and biological evaluation of a cell-permeable probe to detect redox-regulated proteins. Bioorg Med Chem Lett 19, 356359.
  • 10
    Qian J, Klomsiri C, Wright MW, King SB, Tsang AW, Poole LB & Furdui CM (2011) Simple synthesis of 1,3-cyclopentanedione derived probes for labeling sulfenic acid proteins. Chem Commun 47, 92039205.
  • 11
    Qian J, Wani R, Klomsiri C, Poole LB, Tsang AW & Furdui CM (2012) A simple and effective strategy for labeling cysteine sulfenic acid in proteins by utilization of β-ketoesters as cleavable probes. Chem Commun 48, 40914093.
  • 12
    Hansen RE & Winther JR (2009) An introduction to methods for analyzing thiols and disulfides: reactions, reagents, and practical considerations. Anal Biochem 394, 147158.
  • 13
    Dickens F (1933) Interaction of haloacetates and SH compounds. The reaction of haloacetic acids with glutathione and cysteine. The mechanism of iodoacetate poisoning of glyoxalase. Biochem J 27, 11411151.
  • 14
    Poole LB & Ellis HR (2002) Identification of cysteine sulfenic acid in AhpC of alkyl hydroperoxide reductase. Methods Enzymol 348, 122136.
  • 15
    Aversa MC, Barattucci A, Bonaccorsi P, Giannetto P & Jones DN (1997) Synthesis and asymmetric Diels–Alder reactions of enantiopure 3- (alkylsulfinyl)-1-methoxy-1,3-butadienes. J Org Chem 62, 43764384.
  • 16
    Aversa MC, Barattucci A, Bonaccorsi P & Temperini A (2011) Regio- and stereocontrolled synthesis of (Z) -α- (phenylseleno)sulfinyl and -sulfonyl alkenes via sulfenic acids, and a study of their reactivity. Eur J Org Chem 2011, 56685673.
  • 17
    Aversa MC, Barattucci A, Bonaccorsi P & Giannetto P (2007) Recent advances and perspectives in the chemistry of sulfenic acids. Curr Org Chem 11, 10341052.
  • 18
    Ellis HR & Poole LB (1997) Novel application of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole to identify cysteine sulfenic acid in the AhpC component of alkyl hydroperoxide reductase. Biochemistry 36, 1501315018.
  • 19
    Kice JL (1981) Mechanisms and reactivity in reactions of organic oxyacids of sulfur and their anhydrides. In Advances in Physical Organic Chemistry (Gold V & Bethell D, eds), pp. 65181. Academic Press, Waltham, MA, USA.
  • 20
    Davis FA & Billmers RL (1981) Chemistry of sulfenic acids. 4. The first direct evidence for the involvement of sulfenic acids in the oxidation of thiols. J Am Chem Soc 103, 70167018.
  • 21
    Nelson KJ, Parsonage D, Hall A, Karplus PA & Poole LB (2008) Cysteine pKa values for the bacterial peroxiredoxin AhpC. Biochemistry 47, 1286012868.
  • 22
    Salmeen A, Andersen JN, Myers MP, Meng T-C, Hinks JA, Tonks NK & Barford D (2003) Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423, 769773.
  • 23
    Roberts DD, Lewis SD, Ballou DP, Olson ST & Shafer JA (1986) Reactivity of small thiolate anions and cysteine-25 in papain toward methyl methanethiosulfonate. Biochemistry 25, 55955601.
  • 24
    Peskin AV, Low FM, Paton LN, Maghzal GJ, Hampton MB & Winterbourn CC (2007) The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents. J Biol Chem 282, 1188511892.
  • 25
    Rogers LK, Leinweber BL & Smith CV (2006) Detection of reversible protein thiol modifications in tissues. Anal Biochem 358, 171184.
  • 26
    Guidotti G (1965) The rates of reaction of the sulfhydryl groups of human hemoglobin. J Biol Chem 240, 39243927.
  • 27
    Klomsiri C, Nelson KJ, Bechtold E, Soito L, Johnson LC, Lowther WT, Ryu S, King SB, Furdui CM & Poole LB (2010) Use of dimedone-based chemical probes for sulfenic acid detection: evaluation of conditions affecting probe incorporation into redox-sensitive proteins. Methods Enzymol 473, 7794.
  • 28
    Papini A, Rudolph S, Siglmueller G, Musiol HJ, Goehring W & Moroder L (1992) Alkylation of histidine with maleimido-compounds. Int J Pept Protein Res 39, 348355.
  • 29
    Aliverti A, Gadda G, Ronchi S & Zanetti G (1991) Identification of Lys116 as the target of N-ethylmaleimide inactivation of ferredoxin:NADP+ oxidoreductase. Eur J Biochem 198, 2124.
  • 30
    Brewer CF & Riehm JP (1967) Evidence for possible nonspecific reactions between N-ethylmaleimide and proteins. Anal Biochem 18, 248255.
  • 31
    Paulech J, Solis N & Cordwell SJ (2013) Characterization of reaction conditions providing rapid and specific cysteine alkylation for peptide-based mass spectrometry. Biochim Biophys Acta 1834, 372379.
  • 32
    Schmalhausen EV, Pleten' AP & Muronetz VI (2003) Ascorbate-induced oxidation of glyceraldehyde-3-phosphate dehydrogenase. Biochem Biophys Res Commun 308, 492496.
  • 33
    Faucher A & Grand-Maitre C (2003) tris(2-Carboxyethyl)phosphine (TCEP) for the reduction of sulfoxides, sulfonylchlorides, N-oxides, and azides. Synth Commun 33, 35033511.
  • 34
    Friedmann C & Brase S (2010) Synthesis of paracyclophane thiols via an unprecedented reduction–deprotection sequence: direct conversion of tert-butyl sulfoxides into thiols with boron tribromide. Synlett 5, 774776.
  • 35
    Fishkin N, Maloney EK, Chari RVJ & Singh R (2011) A novel pathway for maytansinoid release from thioether linked antibody–drug conjugates (ADCs) under oxidative conditions. Chem Commun 47, 1075210754.
  • 36
    Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P & Snyder SH (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3, 193197.
  • 37
    Leichert LI & Jakob U (2004) Protein thiol modifications visualized in vivo. PLoS Biol 2, 17231737.
  • 38
    Gutmann A (1908) Über die einwirkung von laugen auf athylnatriumthiosulfat. Ber Dtsch Chem Ges 41, 16501655.
  • 39
    Parker DJ & Allison WS (1969) The mechanism of inactivation of glyceraldehyde 3-phosphate dehydrogenase by tetrathionate, o-iodosobenzoate, and iodine monochloride. J Biol Chem 244, 180189.
  • 40
    Radi R, Beckman JS, Bush KM & Freeman BA (1991) Peroxynitrite oxidation of sulfhydryls: the cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266, 42444250.
  • 41
    Reddie KG, Seo YH, Muse WB, Leonard SE & Carroll KS (2008) A chemical approach for detecting sulfenic acid-modified proteins in living cells. Mol BioSyst 4, 521531.
  • 42
    Leonard SE, Reddie KG & Carroll KS (2009) Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells. ACS Chem Biol 4, 783799.
  • 43
    Kaplan N, Urao N, Furuta E, Kim S, Razvi M, Nakamura Y, McKinney RD, Poole LB, Fukai T & Ushio-Fukai M (2011) Localized cysteine sulfenic acid formation by vascular endothelial growth factor: role in endothelial cell migration and angiogenesis. Free Radic Res 45, 11241135.
  • 44
    Michalek RD, Nelson KJ, Holbrook BC, Yi JS, Stridiron D, Daniel LW, Fetrow JS, King SB, Poole LB & Grayson JM (2007) The requirement of reversible cysteine sulfenic acid formation for T cell activation and function. J Immunol 179, 64566467.
  • 45
    Zhang D, Devarie-Baez NO, Li Q, Lancaster JR & Xian M (2012) Methylsulfonyl benzothiazole (MSBT): a selective protein thiol blocking reagent. Org Lett 14, 33963399.
  • 46
    Jaffrey SR & Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001, PL1PL9.
  • 47
    Landino LM, Koumas MT, Mason CE & Alston JA (2006) Ascorbic acid reduction of microtubule protein disulfides and its relevance to protein S-nitrosylation assays. Biochem Biophys Res Commun 340, 347352.
  • 48
    Huang B & Chen C (2006) An ascorbate-dependent artifact that interferes with the interpretation of the biotin switch assay. Free Radic Biol Med 41, 562567.
  • 49
    Giustarini D, Dalle-Donne I, Colombo R, Milzani A & Rossi R (2008) Is ascorbate able to reduce disulfide bridges? A cautionary note. Nitric Oxide 19, 252258.
  • 50
    You K, Benitez LV, McConachie WA & Allison WS (1975) The conversion of glyceraldehyde-3-phosphate dehydrogenase to an acylphosphatase by trinitroglycerin and inactivation of this activity by azide and ascorbate. Biochim Biophys Acta 384, 317330.
  • 51
    Forrester MT, Foster MW & Stamler JS (2007) Assessment and application of the biotin switch technique for examining protein S-nitrosylation under conditions of pharmacologically induced oxidative stress. J Biol Chem 282, 1397713983.
  • 52
    Monteiro G, Horta BB, Pimenta DC, Augusto O & Netto LES (2007) Reduction of 1-Cys peroxiredoxins by ascorbate changes the thiol-specific antioxidant paradigm, revealing another function of vitamin C. Proc Natl Acad Sci USA 104, 48864891.
  • 53
    Wang X, Kettenhofen NJ, Shiva S, Hogg N & Gladwin MT (2008) Copper dependence of the biotin switch assay: modified assay for measuring cellular and blood nitrosated proteins. Free Radic Biol Med 44, 13621372.
  • 54
    Kettenhofen NJ, Wang X, Gladwin MT & Hogg N (2008) In-gel detection of S-nitrosated proteins using fluorescence methods. Methods Enzymol 441, 5371.
  • 55
    van Montfort RLM, Congreve M, Tisi D, Carr R & Jhoti H (2003) Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423, 773777.
  • 56
    Poole LB & Ellis HR (1996) Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 1. Purification and enzymatic activities of overexpressed AhpF and AhpC proteins. Biochemistry 35, 5664.
  • 57
    Ellis HR & Poole LB (1997) Roles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from Salmonella typhimurium. Biochemistry 36, 1334913356.
  • 58
    Bechtold E, Reisz JA, Klomsiri C, Tsang AW, Wright MW, Poole LB, Furdui CM & King SB (2010) Water-soluble triarylphosphines as biomarkers for protein S-nitrosation. ACS Chem Biol 5, 405414.