SEARCH

SEARCH BY CITATION

References

  • 1
    Michell RH, Heath VL, Lemmon MA & Dove SK (2006) Phosphatidylinositol 3,5-bisphosphate: metabolism and cellular functions. Trends Biochem Sci 31, 5263.
  • 2
    Clark J, Anderson KE, Juvin V, Smith TS, Karpe F, Wakelam MJ, Stephens LR & Hawkins PT (2011) Quantification of PtdInsP3 molecular species in cells and tissues by mass spectrometry. Nat Methods 8, 267272.
  • 3
    Anderson KE, Kielkowska A, Durrant TN, Juvin V, Clark J, Stephens LR & Hawkins PT (2013) Lysophosphatidylinositol-acyltransferase-1 (LPIAT1) is required to maintain physiological levels of PtdIns and PtdInsP2 in the mouse. PLoS ONE 8, e58425.
  • 4
    Di PG & De CP (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651657.
  • 5
    Irvine RF (2003) Nuclear lipid signaling. Nat Rev Mol Cell Biol 4, 349360.
  • 6
    Fiume R, Keune WJ, Faenza I, Bultsma Y, Ramazzotti G, Jones DR, Martelli AM, Somner L, Follo MY, Divecha N, et al. (2012) Nuclear phosphoinositides: location, regulation and function. Subcell Biochem 59, 335361.
  • 7
    Halstead JR, Jalink K & Divecha N (2005) An emerging role for PtdIns(4,5)P2-mediated signaling in human disease. Trends Pharmacol Sci 26, 654660.
  • 8
    McCrea HJ & DeCamilli P (2009) Mutations in phosphoinositide metabolizing enzymes and human disease. Physiology 24, 816.
  • 9
    van den Bout I & Divecha N (2009) PIP5K-driven PtdIns(4,5)P2 synthesis: regulation and cellular functions. J Cell Sci 122, 38373850.
  • 10
    Liu Y & Bankaitis VA (2010) Phosphoinositide phosphatases in cell biology and disease. Prog Lipid Res 49, 201217.
  • 11
    Streb H, Irvine RF, Berridge MJ & Schulz I (1983) Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306, 6769.
  • 12
    Berridge MJ & Irvine RF (1989) Inositol phosphates and cell signaling. Nature 341, 197205.
  • 13
    Tsui MM & York JD (2010) Roles of inositol phosphates and inositol pyrophosphates in development, cell signaling and nuclear processes. Adv Enzyme Regul 50, 324337.
  • 14
    Saiardi A (2012) How inositol pyrophosphates control cellular phosphate homeostasis? Adv Biol Regul 52, 351359.
  • 15
    Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9, 99111.
  • 16
    Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P & Hemmings BA (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15, 65416551.
  • 17
    Stokoe D, Stephens LR, Copeland T, Gaffney PR, Reese CB, Painter GF, Holmes AB, McCormick F & Hawkins PT (1997) Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 277, 567570.
  • 18
    Gozani O, Karuman P, Jones DR, Ivanov D, Cha J, Lugovskoy AA, Baird CL, Zhu H, Field SJ, Lessnick SL, et al. (2003) The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114, 99111.
  • 19
    Yin HL & Janmey PA (2003) Phosphoinositide regulation of the actin cytoskeleton. Annu Rev Physiol 65, 761789.
  • 20
    Kouzarides T (2003) Chromatin-modifying enzymes in transcription and cancer. Biochem Soc Trans 31, 741743.
  • 21
    Turner BM (2000) Histone acetylation and an epigenetic code. BioEssays 22, 836845.
  • 22
    Turner BM (2002) Cellular memory and the histone code. Cell 111, 285291.
  • 23
    Henikoff S & Shilatifard A (2011) Histone modification: cause or cog? Trends Genet 27, 389396.
  • 24
    Dawson MA, Kouzarides T & Huntly BJ (2012) Targeting epigenetic readers in cancer. N Engl J Med 367, 647657.
  • 25
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128, 693705.
  • 26
    Capitani S, Mazzotti G, Jovine R, Papa S, Maraldi NM & Manzoli FA (1979) Effect of phosphatidylcholine vesicles on the activity of DNA polymerase-α. Mol Cell Biochem 27, 135138.
  • 27
    Capitani S, Caramelli E, Felaco M, Miscia S & Manzoli FA (1981) Effect of phospholipid vesicles on endogenous RNA polymerase activity of isolated rat liver nuclei. Physiol Chem Phys 13, 153158.
  • 28
    Manzoli FA, Capitani S, Mazzotti G, Barnabei O & Maraldi NM (1982) Role of chromatin phospholipids on template availability and ultrastructure of isolated nuclei. Adv Enzyme Regul 20, 247262.
  • 29
    Maraldi NM, Capitani S, Caramelli E, Cocco L, Barnabei O & Manzoli FA (1984) Conformational changes of nuclear chromatin related to phospholipid induced modifications of the template availability. Adv Enzyme Regul 22, 447464.
  • 30
    Cocco L, Gilmour RS, Maraldi NM, Martelli AM, Papa S & Manzoli FA (1985) Increase of globin RNA synthesis induced by phosphatidylserine liposomes in isolated erythroleukemic cell nuclei Morphological and functional features. Biol Cell 54, 4956.
  • 31
    Capitani S, Cocco L, Maraldi NM, Papa S & Manzoli FA (1986) Effect of phospholipids on transcription and ribonucleoprotein processing in isolated nuclei. Adv Enzyme Regul 25, 425438.
  • 32
    Smith CD & Wells WW (1983) Phosphorylation of rat liver nuclear envelopes. II. Characterization of in vitro lipid phosphorylation. J Biol Chem 258, 93689373.
  • 33
    Smith CD & Wells WW (1983) Phosphorylation of rat liver nuclear envelopes. I. Characterization of in vitro protein phosphorylation. J Biol Chem 258, 93609367.
  • 34
    Wells WW, Seyfred MA, Smith CD & Sakai M (1987) Measurement of subcellular sites of polyphosphoinositide metabolism in isolated rat hepatocytes. Methods Enzymol 141, 9299.
  • 35
    Cocco L, Gilmour RS, Ognibene A, Letcher AJ, Manzoli FA & Irvine RF (1987) Synthesis of polyphosphoinositides in nuclei of Friend cells. Evidence for polyphosphoinositide metabolism inside the nucleus which changes with cell differentiation. Biochem J 248, 765770.
  • 36
    Divecha N, Letcher AJ, Banfic HH, Rhee SG & Irvine RF (1995) Changes in the components of a nuclear inositide cycle during differentiation in murine erythroleukaemia cells. Biochem J 312, 6367.
  • 37
    Divecha N, Banfic H & Irvine RF (1991) The polyphosphoinositide cycle exists in the nuclei of Swiss 3T3 cells under the control of a receptor (for IGF-I) in the plasma membrane, and stimulation of the cycle increases nuclear diacylglycerol and apparently induces translocation of protein kinase C to the nucleus. EMBO J 10, 32073214.
  • 38
    Cocco L, Martelli AM, Gilmour RS, Ognibene A, Manzoli FA & Irvine RF (1988) Rapid changes in phospholipid metabolism in the nuclei of Swiss 3T3 cells induced by treatment of the cells with insulin-like growth factor I. Biochem Biophys Res Commun 154, 12661272.
  • 39
    Divecha N, Banfic H & Irvine RF (1993) Inositides and the nucleus and inositides in the nucleus. Cell 74, 405407.
  • 40
    Divecha N & Irvine RF (1995) Phospholipid signaling. Cell 80, 269278.
  • 41
    Leach KL, Ruff VA, Jarpe MB, Adams LD, Fabbro D & Raben DM (1992) α-thrombin stimulates nuclear diglyceride levels and differential nuclear localization of protein kinase C isozymes in IIC9 cells. J Biol Chem 267, 2181621822.
  • 42
    Baldassare JJ, Jarpe MB, Alferes L & Raben DM (1997) Nuclear translocation of RhoA mediates the mitogen-induced activation of phospholipase D involved in nuclear envelope signal transduction. J Biol Chem 272, 49114914.
  • 43
    Payrastre B, Nievers M, Boonstra J, Breton M, Verkleij AJ & van Bergen en Henegouwen PM (1992) A differential location of phosphoinositide kinases, diacylglycerol kinase, and phospholipase C in the nuclear matrix. J Biol Chem 267, 50785084.
  • 44
    de Graaf P, Klapisz EE, Schulz TK, Cremers AF, Verkleij AJ & van Bergen en Henegouwen PM (2002) Nuclear localization of phosphatidylinositol 4-kinase β. J Cell Sci 115, 17691775.
  • 45
    Boronenkov IV, Loijens JC, Umeda M & Anderson RA (1998) Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol Biol Cell 9, 35473560.
  • 46
    Jones DR, Bultsma Y, Keune WJ, Halstead JR, Elouarrat D, Mohammed S, Heck AJ, D'Santos CS & Divecha N (2006) Nuclear PtdIns5P as a transducer of stress signaling: an in vivo role for PIP4Kβ. Mol Cell 23, 685695.
  • 47
    Sindic A, Aleksandrova A, Fields AP, Volinia S & Banfic H (2001) Presence and activation of nuclear phosphoinositide 3-kinase C2β during compensatory liver growth. J Biol Chem 276, 1775417761.
  • 48
    Visnjic D, Crljen V, Curic J, Batinic D, Volinia S & Banfic H (2002) The activation of nuclear phosphoinositide 3-kinase C2β in all-trans-retinoic acid-differentiated HL-60 cells. FEBS Lett 529, 268274.
  • 49
    Resnick AC, Snowman AM, Kang BN, Hurt KJ, Snyder SH & Saiardi A (2005) Inositol polyphosphate multikinase is a nuclear PI3-kinase with transcriptional regulatory activity. Proc Natl Acad Sci USA 102, 1278312788.
  • 50
    Martelli AM, Cocco L, Capitani S, Miscia S, Papa S & Manzoli FA (2007) Nuclear phosphatidylinositol 3,4,5-trisphosphate, phosphatidylinositol 3-kinase, Akt, and PTen: emerging key regulators of anti-apoptotic signaling and carcinogenesis. Eur J Histochem 51 (Suppl. 1), 125131.
  • 51
    Martelli AM, Evangelist C, Billi AM, Manzoli L, Papa V & Cocco L (2007) Intranuclear 3′-phosphoinositide metabolism and apoptosis protection in PC12 cells. Acta Biomed 78 (Suppl. 1), 113119.
  • 52
    Vann LR, Wooding FB, Irvine RF & Divecha N (1997) Metabolism and possible compartmentalization of inositol lipids in isolated rat-liver nuclei. Biochem J 327, 569576.
  • 53
    Watt SA, Kular G, Fleming IN, Downes CP & Lucocq JM (2002) Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase C δ1. Biochem J 363, 657666.
  • 54
    Lindsay Y, McCoull D, Davidson L, Leslie NR, Fairservice A, Gray A, Lucocq J & Downes CP (2006) Localization of agonist-sensitive PtdIns(3,4,5)P3 reveals a nuclear pool that is insensitive to PTEN expression. J Cell Sci 119, 51605168.
  • 55
    Mellman DL, Gonzales ML, Song C, Barlow CA, Wang P, Kendziorski C & Anderson RA (2008) A PtdIns4,5P2-regulated nuclear poly(A) polymerase controls expression of select mRNAs. Nature 451, 10131017.
  • 56
    Toska E, Campbell HA, Shandilya J, Goodfellow SJ, Shore P, Medler KF & Roberts SG (2012) Repression of transcription by WT1-BASP1 requires the myristoylation of BASP1 and the PIP2-dependent recruitment of histone deacetylase. Cell Rep 2, 462469.
  • 57
    Blind RD, Suzawa M & Ingraham HA (2012) Direct modification and activation of a nuclear receptor–PIP2 complex by the inositol lipid kinase IPMK. Sci Signal 5, ra44.
  • 58
    Martelli AM, Gilmour RS, Bertagnolo V, Neri LM, Manzoli L & Cocco L (1992) Nuclear localization and signaling activity of phosphoinositidase C β in Swiss 3T3 cells. Nature 358, 242245.
  • 59
    Xu A, Suh PG, Marmy-Conus N, Pearson RB, Seok OY, Cocco L & Gilmour RS (2001) Phosphorylation of nuclear phospholipase C β1 by extracellular signal-regulated kinase mediates the mitogenic action of insulin-like growth factor I. Mol Cell Biol 21, 29812990.
  • 60
    Piazzi M, Bavelloni A, Faenza I, Blalock W, Urbani A, D'Aguanno S, Fiume R, Ramazzotti G, Maraldi NM & Cocco L (2010) eEF1A phosphorylation in the nucleus of insulin-stimulated C2C12 myoblasts: Ser53 is a novel substrate for protein kinase C βI. Mol Cell Proteomics 9, 27192728.
  • 61
    Sun F, Zhou B, Lin X & Duan L (2011) Proteomic analysis identifies nuclear protein effectors in PKC-δ signaling under high glucose-induced apoptosis in human umbilical vein endothelial cells. Mol Med Rep 4, 865872.
  • 62
    Costa-Junior HM, Garavello NM, Duarte ML, Berti DA, Glaser T, de Andrade A, Labate CA, Ferreira AT, Perales JE, Xavier-Neto J, et al. (2010) Phosphoproteomics profiling suggests a role for nuclear βΙPKC in transcription processes of undifferentiated murine embryonic stem cells. J Proteome Res 9, 61916206.
  • 63
    Humbert JP, Matter N, Artault JC, Koppler P & Malviya AN (1996) Inositol 1,4,5-trisphosphate receptor is located to the inner nuclear membrane vindicating regulation of nuclear calcium signaling by inositol 1,4,5-trisphosphate Discrete distribution of inositol phosphate receptors to inner and outer nuclear membranes. J Biol Chem 271, 478485. Erratum appears in J Biol Chem 1996 271, 5287.
  • 64
    Echevarria W, Leite MF, Guerra MT, Zipfel WR & Nathanson MH (2003) Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum. Nat Cell Biol 5, 440446.
  • 65
    Leite MF, Thrower EC, Echevarria W, Koulen P, Hirata K, Bennett AM, Ehrlich BE & Nathanson MH (2003) Nuclear and cytosolic calcium are regulated independently. Proc Natl Acad Sci USA 100, 29752980.
  • 66
    O'Malley KL, Jong YJ, Gonchar Y, Burkhalter A & Romano C (2003) Activation of metabotropic glutamate receptor mGlu5 on nuclear membranes mediates intranuclear Ca2+ changes in heterologous cell types and neurons. J Biol Chem 278, 2821028219.
  • 67
    Rodrigues MA, Gomes DA, Nathanson MH & Leite MF (2009) Nuclear calcium signaling: a cell within a cell. Braz J Med Biol Res 42, 1720.
  • 68
    Bading H, Hardingham GE, Johnson CM & Chawla S (1997) Gene regulation by nuclear and cytoplasmic calcium signals. Biochem Biophys Res Commun 236, 541543.
  • 69
    Monserrate JP & York JD (2010) Inositol phosphate synthesis and the nuclear processes they affect. Curr Opin Cell Biol 22, 365373.
  • 70
    Odom AR, Stahlberg A, Wente SR & York JD (2000) A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287, 20262029.
  • 71
    cazar-Roman AR, Tran EJ, Guo S & Wente SR (2006) Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Nat Cell Biol 8, 711716.
  • 72
    Shen X, Xiao H, Ranallo R, Wu WH & Wu C (2003) Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299, 112114.
  • 73
    Steger DJ, Haswell ES, Miller AL, Wente SR & O'Shea EK (2003) Regulation of chromatin remodeling by inositol polyphosphates. Science 299, 114116.
  • 74
    York SJ, Armbruster BN, Greenwell P, Petes TD & York JD (2005) Inositol diphosphate signaling regulates telomere length. J Biol Chem 280, 42644269.
  • 75
    Hanakahi LA, Bartlet-Jones M, Chappell C, Pappin D & West SC (2000) Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell 102, 721729.
  • 76
    Macbeth MR, Schubert HL, Vandemark AP, Lingam AT, Hill CP & Bass BL (2005) Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science 309, 15341539.
  • 77
    Watson PJ, Fairall L, Santos GM & Schwabe JW (2012) Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 481, 335340.
  • 78
    Millard CJ, Watson PJ, Celardo I, Gordiyenko Y, Cowley SM, Robinson CV, Fairall L & Schwabe JW (2013) Class I HDACs share a common mechanism of regulation by inositol phosphates. Mol Cell 51, 5767.
  • 79
    Saiardi A, Bhandari R, Resnick AC, Snowman AM & Snyder SH (2004) Phosphorylation of proteins by inositol pyrophosphates. Science 306, 21012105.
  • 80
    Azevedo C, Burton A, Ruiz-Mateos E, Marsh M & Saiardi A (2009) Inositol pyrophosphate mediated pyrophosphorylation of AP3B1 regulates HIV-1 Gag release. Proc Natl Acad Sci USA 106, 2116121166.
  • 81
    Deato MD & Tjian R (2007) Switching of the core transcription machinery during myogenesis. Genes Dev 21, 21372149.
  • 82
    D'Alessio JA, Wright KJ & Tjian R (2009) Shifting players and paradigms in cell-specific transcription. Mol Cell 36, 924931.
  • 83
    Vermeulen M, Mulder KW, Denissov S, Pijnappel WW, van Schaik FM, Varier RA, Baltissen MP, Stunnenberg HG, Mann M & Timmers HT (2007) Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131, 5869.
  • 84
    Shilatifard A, Lane WS, Jackson KW, Conaway RC & Conaway JW (1996) An RNA polymerase II elongation factor encoded by the human ELL gene. Science 271, 18731876.
  • 85
    Smith E & Shilatifard A (2013) Transcriptional elongation checkpoint control in development and disease. Genes Dev 27, 10791088.
  • 86
    Rameh LE, Tolias KF, Duckworth BC & Cantley LC (1997) A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature 390, 192196.
  • 87
    Bienz M (2006) The PHD finger, a nuclear protein-interaction domain. Trends Biochem Sci 31, 3540.
  • 88
    Musselman CA & Kutateladze TG (2009) PHD fingers: epigenetic effectors and potential drug targets. Mol Interv 9, 314323.
  • 89
    Peña PV, Davrazou F, Shi X, Walter KL, Verkhusha VV, Gozani O, Zhao R & Kutateladze TG (2006) Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442, 100103.
  • 90
    Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, Landry J, Kauer M, Tackett AJ, Chait BT, Badenhorst P, et al. (2006) A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodeling. Nature 442, 8690.
  • 91
    Saksouk N, Avvakumov N, Champagne KS, Hung T, Doyon Y, Cayrou C, Paquet E, Ullah M, Landry AJ, Cote V, et al. (2009) HBO1 HAT complexes target chromatin throughout gene coding regions via multiple PHD finger interactions with histone H3 tail. Mol Cell 33, 257265.
  • 92
    Alvarez-Venegas R, Sadder M, Hlavacka A, Baluska F, Xia Y, Lu G, Firsov A, Sarath G, Moriyama H, Dubrovsky JG, et al. (2006) The Arabidopsis homolog of trithorax, ATX1, binds phosphatidylinositol 5-phosphate, and the two regulate a common set of target genes. Proc Natl Acad Sci USA 103, 60496054.
  • 93
    varez-Venegas R, Pien S, Sadder M, Witmer X, Grossniklaus U & Avramova Z (2003) ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes. Curr Biol 13, 627637.
  • 94
    Ndamukong I, Jones DR, Lapko H, Divecha N & Avramova Z (2010) Phosphatidylinositol 5-phosphate links dehydration stress to the activity of ARABIDOPSIS TRITHORAX-LIKE factor ATX1. PLoS ONE 5, e13396.
  • 95
    Shi X, Hong T, Walter KL, Ewalt M, Michishita E, Hung T, Carney D, Pena P, Lan F, Kaadige MR, et al. (2006) ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442, 9699.
  • 96
    Viiri KM, Janis J, Siggers T, Heinonen TY, Valjakka J, Bulyk ML, Maki M & Lohi O (2009) DNA-binding and -bending activities of SAP30L and SAP30 are mediated by a zinc-dependent module and monophosphoinositides. Mol Cell Biol 29, 342356.
  • 97
    Elkin SK, Ivanov D, Ewalt M, Ferguson CG, Hyberts SG, Sun ZY, Prestwich GD, Yuan J, Wagner G, Oettinger MA, et al. (2005) A PHD finger motif in the C terminus of RAG2 modulates recombination activity. J Biol Chem 280, 2870128710.
  • 98
    Matthews AG, Kuo AJ, Ramon-Maiques S, Han S, Champagne KS, Ivanov D, Gallardo M, Carney D, Cheung P, Ciccone DN, et al. (2007) RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 450, 11061110.
  • 99
    Dunaief JL, Strober BE, Guha S, Khavari PA, Alin K, Luban J, Begemann M, Crabtree GR & Goff SP (1994) The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 79, 119130.
  • 100
    Hargreaves DC & Crabtree GR (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21, 396420.
  • 101
    Dykhuizen EC, Hargreaves DC, Miller EL, Cui K, Korshunov A, Kool M, Pfister S, Cho YJ, Zhao K & Crabtree GR (2013) BAF complexes facilitate decatenation of DNA by topoisomerase IIα. Nature 497, 624627.
  • 102
    Zhao K, Wang W, Rando OJ, Xue Y, Swiderek K, Kuo A & Crabtree GR (1998) Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95, 625636.
  • 103
    Rando OJ, Zhao K, Janmey P & Crabtree GR (2002) Phosphatidylinositol-dependent actin filament binding by the SWI/SNF-like BAF chromatin remodeling complex. Proc Natl Acad Sci USA 99, 28242829.
  • 104
    Ye J, Zhao J, Hoffmann-Rohrer U & Grummt I (2008) Nuclear myosin I acts in concert with polymeric actin to drive RNA polymerase I transcription. Genes Dev 22, 322330.
  • 105
    de Lanerolle P (2012) Nuclear actin and myosins at a glance. J Cell Sci 125, 49454949.
  • 106
    Laux T, Fukami K, Thelen M, Golub T, Frey D & Caroni P (2000) GAP43, MARCKS, and CAP23 modulate PI(4,5)P2 at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J Cell Biol 149, 14551472.
  • 107
    Cantley LC (2001) Transcription. Translocating tubby. Science 292, 20192021.
  • 108
    Yu H, Fukami K, Watanabe Y, Ozaki C & Takenawa T (1998) Phosphatidylinositol 4,5-bisphosphate reverses the inhibition of RNA transcription caused by histone H1. Eur J Biochem 251, 281287.
  • 109
    Osborne SL, Thomas CL, Gschmeissner S & Schiavo G (2001) Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J Cell Sci 114, 25012511.
  • 110
    Shilatifard A (2004) Transcriptional elongation control by RNA polymerase II: a new frontier. Biochim Biophys Acta 1677, 7986.
  • 111
    Mortier E, Wuytens G, Leenaerts I, Hannes F, Heung MY, Degeest G, David G & Zimmermann P (2005) Nuclear speckles and nucleoli targeting by PIP2–PDZ domain interactions. EMBO J 24, 25562565.
  • 112
    Yildirim S, Castano E, Sobol M, Philimonenko VV, Dzijak R, Venit T & Hozak P (2013) Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. J Cell Sci 126, 27302739.
  • 113
    Lewis AE, Sommer L, Arntzen MO, Strahm Y, Morrice NA, Divecha N & D'Santos CS (2011) Identification of nuclear phosphatidylinositol 4,5-bisphosphate-interacting proteins by neomycin extraction. Mol Cell Proteomics 10, M110.003376.
  • 114
    Jani D, Lutz S, Hurt E, Laskey RA, Stewart M & Wickramasinghe VO (2012) Functional and structural characterization of the mammalian TREX-2 complex that links transcription with nuclear messenger RNA export. Nucleic Acids Res 40, 45624573.
  • 115
    Dias AP, Dufu K, Lei H & Reed R (2010) A role for TREX components in the release of spliced mRNA from nuclear speckle domains. Nat Commun 1, 97.
  • 116
    Chi B, Wang Q, Wu G, Tan M, Wang L, Shi M, Chang X & Cheng H (2013) Aly and THO are required for assembly of the human TREX complex and association of TREX components with the spliced mRNA. Nucleic Acids Res 41, 12941306.
  • 117
    Okada M, Jang SW & Ye K (2008) Akt phosphorylation and nuclear phosphoinositide association mediate mRNA export and cell proliferation activities by ALY. Proc Natl Acad Sci USA 105, 86498654.
  • 118
    Neri LM, Martelli AM, Borgatti P, Colamussi ML, Marchisio M & Capitani S (1999) Increase in nuclear phosphatidylinositol 3-kinase activity and phosphatidylinositol (3,4,5) trisphosphate synthesis precede PKC-ζ translocation to the nucleus of NGF-treated PC12 cells. FASEB J 13, 22992310.
  • 119
    Bacqueville D, Deleris P, Mendre C, Pieraggi MT, Chap H, Guillon G, Perret B & Breton-Douillon M (2001) Characterization of a G protein-activated phosphoinositide 3-kinase in vascular smooth muscle cell nuclei. J Biol Chem 276, 2217022176.
  • 120
    Deleris P, Gayral S & Breton-Douillon M (2006) Nuclear Ptdlns(3,4,5)P3 signaling: an ongoing story. J Cell Biochem 98, 469485.
  • 121
    Ahn JY, Liu X, Cheng D, Peng J, Chan PK, Wade PA & Ye K (2005) Nucleophosmin/B23, a nuclear PI(3,4,5)P3 receptor, mediates the antiapoptotic actions of NGF by inhibiting CAD. Mol Cell 18, 435445.
  • 122
    Marques M, Kumar A, Poveda AM, Zuluaga S, Hernandez C, Jackson S, Pasero P & Carrera AC (2009) Specific function of phosphoinositide 3-kinase β in the control of DNA replication. Proc Natl Acad Sci USA 106, 75257530.
  • 123
    Kumar A, Fernandez-Capetillo O & Carrera AC (2010) Nuclear phosphoinositide 3-kinase β controls double-strand break DNA repair. Proc Natl Acad Sci USA 107, 74917496.
  • 124
    Kumar A, Redondo-Munoz J, Perez-Garcia V, Cortes I, Chagoyen M & Carrera AC (2011) Nuclear but not cytosolic phosphoinositide 3-kinase β has an essential function in cell survival. Mol Cell Biol 31, 21222133.
  • 125
    Redondo-Munoz J, Rodriguez MJ, Silio V, Perez-Garcia V, Valpuesta JM & Carrera AC (2013) Phosphoinositide 3-kinase β controls replication factor C assembly and function. Nucleic Acids Res 41, 855868.
  • 126
    Krugmann S, Anderson KE, Ridley SH, Risso N, McGregor A, Coadwell J, Davidson K, Eguinoa A, Ellson CD, Lipp P, et al. (2002) Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Mol Cell 9, 95108.
  • 127
    Kimber WA, Trinkle-Mulcahy L, Cheung PC, Deak M, Marsden LJ, Kieloch A, Watt S, Javier RT, Gray A, Downes CP, et al. (2002) Evidence that the tandem-pleckstrin-homology-domain-containing protein TAPP1 interacts with Ptd(3,4)P2 and the multi-PDZ-domain-containing protein MUPP1 in vivo. Biochem J 361, 525536.
  • 128
    Catimel B, Schieber C, Condron M, Patsiouras H, Connolly L, Catimel J, Nice EC, Burgess AW & Holmes AB (2008) The PI(3,5)P2 and PI(4,5)P2 interactomes. J Proteome Res 7, 52955313.
  • 129
    Catimel B, Yin MX, Schieber C, Condron M, Patsiouras H, Catimel J, Robinson DE, Wong LS, Nice EC, Holmes AB, et al. (2009) PI(3,4,5)P3 interactome. J Proteome Res 8, 37123726.
  • 130
    Bidlingmaier S & Liu B (2007) Interrogating yeast surface-displayed human proteome to identify small molecule-binding proteins. Mol Cell Proteomics 6, 20122020.
  • 131
    Bidlingmaier S, Wang Y, Liu Y, Zhang N & Liu B (2011) Comprehensive analysis of yeast surface displayed cDNA library selection outputs by exon microarray to identify novel protein-ligand interactions. Mol Cell Proteomics 10, M110.005116.