• 1
    Coller J & Parker R (2005) General translation repression by activators of mRNA decapping. Cell 122, 875886.
  • 2
    Shyu A-B, Wilkinson MF & van Hoof A (2008) Messenger RNA regulation: to translate or to degrade. EMBO J 27, 471481.
  • 3
    Franks TM & Lykke-Andersen J (2008) The control of mRNA decapping and P-body formation. Mol Cell 32, 605615.
  • 4
    Sonenberg N & Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731745.
  • 5
    Meyer S, Temme C & Wahle E (2004) Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit Rev Biochem Mol Biol 39, 197216.
  • 6
    Wang Z, Jiao X, Carr-Schmidt A & Kiledjian M (2002) The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc Natl Acad Sci USA 99, 1266312668.
  • 7
    Malys N, Carrol K, Miyan J, Tollervey D & McCarthy JE (2004) The scavenger m7G pppX pyrophosphate activity of Dcs1 modulates nutrient-induced responses in yeast. Nucleic Acids Res 32, 197216.
  • 8
    Liu SW, Jiao X, Liu H, Gu M, Lima CD & Kiledjian M (2004) Functional analysis of mRNA scavenger decapping enzyme. RNA 10, 14121422.
  • 9
    Liu H, Rodgers ND, Jiao X & Kiledjian M (2002) The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases. EMBO J 21, 46994708.
  • 10
    Lima CD, Klein MG & Hendrickson WA (1997) Structure-based analysis of catalysis and substrate properties definition in the HIT protein family. Science 278, 286290.
  • 11
    Gu MG, Fabrega C, Liu SW, Liu HD, Kiledjian M & Lima CD (2004) Insights into the structure, mechanism, and regulation of scavenger mRNA decapping activity. Mol Cell 14, 6780.
  • 12
    Chen N, Walsh MA, Liu YY, Parker R & Song HW (2005) Crystal structures of human DcpS in ligand free and m7GDP-bound forms suggest a dynamic mechanism for scavenger mRNA decapping. J Mol Biol 347, 707718.
  • 13
    Wypijewska A, Bojarska E, Lukaszewicz M, Stepinski J, Jemielity J, Davis RE & Darzynkiewicz E (2012) 7-Methylguanosine diphosphate (m7GDP) is not hydrolyzed but strongly bound by decapping scavenger (DcpS) enzymes and potently inhibits their activity. Biochemistry 51, 80038013.
  • 14
    Cohen LS, Mikhli C, Friedman C, Jankowska-Anyszka M, Stepinski J, Darzynkiewicz E & Davis RE (2004) Nematode m7G pppG and m32,2,7GpppG decapping: activities in Ascaris embryos and characterization of C. elegans DcpS. RNA 10, 16091624.
  • 15
    Liu H & Kiledjian M (2005) Scavenger decapping activity facilitates 5′ to 3′ mRNA decay. Mol Cell Biol 25, 97649772.
  • 16
    Grudzien E, Kalek M, Jemielity J, Darzynkiewicz E & Rhoads RE (2006) Differential inhibition of mRNA degradation pathways by novel cap analogs. J Biol Chem 281, 18571867.
  • 17
    Bail S & Kiledjian M (2008) DcpS, a general modulator of cap-binding protein-dependent processes? RNA Biol 5, 216219.
  • 18
    Singh J, Salcius M, Liu S-W, Staker BL, Mishra R, Thurmod J, Michaud G, Mattoon DR, Printen J, Christensen J et al. (2008) DcpS as a therapeutic target for spinal muscular atrophy. ACS Chem Biol 3, 711722.
  • 19
    Mamane Y, Petroulakis E, Rong L, Yoshida K, Ler LW & Sonenberg N (2004) eIF4E – from translation to transformation. Oncogene 23, 31723179.
  • 20
    Graff JR, Konicek BW, Carter JH & Marcusson EG (2008) Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res 68, 631634.
  • 21
    Kowalska J, Lewdorowicz M, Zuberek J, Grudzien-Nogalska E, Bojarska E, Stepinski J, Rhoads RE, Darzynkiewicz E, Davis RE & Jemielity J (2008) Synthesis and characterization of mRNA cap analogs containing phosphorothioate substitutions that bind tightly to eIF4E and are resistant to the decapping pyrophosphatase DcpS. RNA 14, 11191131.
  • 22
    Kowalska J, Lukaszewicz M, Zuberek J, Ziemniak M, Darzynkiewicz E & Jemielity J (2009) Phosphorothioate analogs of m7GTP are enzymatically stable inhibitors of cap-dependent translation. Bioorg Med Chem Lett 19, 19211925.
  • 23
    Bosse GD, Rüegger S, Ow MC, Vasquez-Rifo A, Rondeau EL, Ambros VR, Groβhans H & Simard M (2013) The decapping scavenger enzyme DCS-1 controls microRNA levels in Caenorhabditis elegans. Mol Cell 50, 17.
  • 24
    Blaxter ML (2011) Nematodes: the worm and its relatives. PLoS Biol 9, e1001050.
  • 25
    C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 20122018.
  • 26
    Wypijewska A, Bojarska E, Stepinski J, Jankowska-Anyszka M, Jemielity J, Davis RE & Darzynkiewicz E (2010) Structural requirements for Caenorhabditis elegans DcpS substrates based on fluorescence and HPLC enzyme kinetic studies. FEBS J 277, 30033013.
  • 27
    Kalek M, Jemielity J, Darzynkiewicz ZM, Bojarska E, Stepinski J, Stolarski R, Davis RE & Darzynkiewicz E (2006) Enzymatically stable 5′ mRNA cap analogs: synthesis and binding studies with human DcpS decapping enzyme. Bioorg Med Chem 14, 32233230.
  • 28
    Darzynkiewicz ZM, Bojarska E, Kowalska J, Lewdorowicz M, Jemielity J, Kalek M, Stepinski J, Davis RE & Darzynkiewicz E (2007) Interaction of human decapping scavenger with 5′ mRNA cap analogues: structural requirements for catalytic activity. J Phys Condens Matter 19, 285217.
  • 29
    Rydzik AM, Lukaszewicz M, Zuberek J, Kowalska J, Darzynkiewicz ZM, Darzynkiewicz E & Jemielity J (2009) Synthetic dinucleotide mRNA cap analogs with tetraphosphate 5′,5′ bridge containing methylenebis(phosphonate) modifications. Org Biomol Chem 7, 47634776.
  • 30
    Rydzik AM, Kulis M, Lukaszewicz M, Kowalska J, Zuberek J, Darzynkiewicz ZM, Darzynkiewicz E & Jemielity J (2012) Synthesis and properties of mRNA cap analogs containing imidodiphosphate moiety – fairly mimicking natural cap structure, yet resistant to enzymatic hydrolysis. Bioorg Med Chem 20, 16991710.
  • 31
    Darzynkiewicz ZM, Bojarska E, Stepinski J, Jankowska-Anyszka M, Davis RE & Darzynkiewicz E (2007) Affinity of dinucleotide cap analogues for human decapping scavenger (hDcpS). Nucleosides Nucleotides Nucleic Acids 26, 13491352.
  • 32
    Stepinski J, Waddel C, Stolarski R, Darzynkiewicz E & Rhoads RE (2001) Synthesis and properties of mRNA containing the novel ‘anti-reverse’ cap analogs 7-methyl(3′-O-methyl)GpppG and 7-methyl(3′-deoxy)GpppG. RNA 7, 14861495.
  • 33
    Jemielity J, Fowler T, Zuberek J, Stepinski J, Lewdorowicz M, Niedzwiecka A, Stolarski R, Darzynkiewicz E & Rhoads RE (2003) Novel ‘anti-reverse’ cap analogs with superior translational properties. RNA 9, 11081122.
  • 34
    Kuhn AN, Diken M, Kreiter S, Selmi A, Kowalska J, Jemielity J, Darzynkiewicz E, Huber C, Tureci O & Sahin U (2010) Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther 17, 961971.
  • 35
    Stepinski J, Bretner M, Jankowska M, Felczak K, Stolarski R, Wieczorek Z, Cai A-L, Rhoads RE, Temeriusz A, Haber D et al. (1995) Synthesis and properties of P1, P2-, P1, P3- and P1, P4-dinucleoside di-, tri- and tetraphosphate mRNA 5′-cap analogues. Nucleosides Nucleotides 14, 717721.
  • 36
    Gill SC & von Hippel PH (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182, 319326; errata Anal Biochem 189, 283.
  • 37
    Niedzwiecka A, Marcotrigiano J, Stepinski J, Jankowska-Anyszka M, Wyslouch-Cieszynska A, Dadlez M, Gingras AC, Mak P, Darzynkiewicz E, Sonenberg N et al. (2002) Biophysical studies of eIF4E cap-binding protein: recognition of mRNA 5′ cap structure and synthetic fragments of eIF4G and 4E-BP1 proteins. J Mol Biol 319, 615635.
  • 38
    Demchenko AP (2009) Introduction to Fluorescence Sensing, pp. 6676. Springer Science and Business Media, New York.
  • 39
    Han GW, Schwarzenbacher R, McMullan D, Abdubek P, Ambing E, Axelrod H, Biorac T, Canaves JM, Chiu HJ, Dai X et al. (2005) Crystal structure of an Apo mRNA decapping enzyme (DcpS) from mouse at 1.83 A resolution. Proteins 60, 797802.
  • 40
    Corpet F (1998) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16, 1088110890.
  • 41
    Geourjon C & Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11, 681684.
  • 42
    Cole C, Barber JD & Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36 (Web Server issue), W197W201.
  • 43
    Meiler J & Baker D (2003) Coupled prediction of protein secondary and tertiary structure. Proc Natl Acad Sci USA 100, 1210512110.
  • 44
    McGuffin LJ, Bryson K & Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16, 404405.
  • 45
    Pollastri G & McLysaght A (2005) Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21, 17191720.
  • 46
    Cheng J, Randall A, Sweredoski M & Baldi P (2005) SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res 33, 7276.
  • 47
    Sali A & Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234, 779815.
  • 48
    Pawlowski M, Gajda MJ, Matlak R & Bujnicki JM (2008) MetaMQAP: a meta-server for the quality assessment of protein models. BMC Bioinformatics 9, 403.
  • 49
    Morris GM, Hue R, Lindstrom W, Sanner MF, Belew RK, Goodsel DS & Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 16, 27852791.
  • 50
    Hanwell MD, Curtis D, Lonie DC, Vandermeersch T, Zurek E & Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4, 17.
  • 51
    Faletrov YV, Frolova NS, Hlushko HV, Rudaya EV, Edimecheva IP, Mauersberger S & Shkumatov VM (2013) Evaluation of fluorescence probes Nile Red and 25-NBD-cholesterol as substrates for steroid-converting oxidoreductases using pure enzymes and microorganisms. FEBS J 280, 31093119.
  • 52
    Faletrov YV, Bialevich KI, Edimecheva IP, Kostsin DG, Rudaya EV, Slobozhanina EI & Shkumatov VM (2013) 22-NBD-cholesterol as a novel fluorescent substrate for cholesterol-converting oxidoreductases. J Steroid Biochem Mol Biol 134, 5966.
  • 53
    Olsen L, Pettersson I, Hemmingsen L, Adolph HW & Jorgensen FS (2004) Docking and scoring of metallo-β-lactamases inhibitors. J Comput Aided Mol Des 18, 287302.