SEARCH

SEARCH BY CITATION

References

  • 1
    Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D & Shaw A (1992) Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 267, 1499815004.
  • 2
    Schmidt AM, Vianna M, Gerlach M, Brett J, Ryan J, Kao J, Esposito C, Hegarty H, Hurley W, Clauss M et al. (1992) Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem 267, 1498714997.
  • 3
    Brett J, Schmidt AM, Yan SD, Zou YS, Weidman E, Pinsky D, Nowygrod R, Neeper M, Przysieck C, Shaw A, Migheli A & Stern D (1993) Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am J Pathol 143, 16991712.
  • 4
    Bork P, Holm L & Sander C (1994) The immunoglobulin fold. Structural classification, sequence patterns and common core. J Mol Biol 242, 309320.
  • 5
    Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, Avila C, Kambham N, Bierhaus A, Nawroth P et al. (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97, 889901.
  • 6
    Leclerc E, Fritz G, Vetter SW & Heizmann CW (2009) Binding of S100 proteins to RAGE: an update. Biochim Biophys Acta 1793, 9931007.
  • 7
    Hori O, Brett J, Slattery T, Cao R, Zhang J, Chen JX, Nagashima M, Lundh ER, Vijay S, Nitecki D et al. (1995) The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. J Biol Chem 270, 2575225761.
  • 8
    Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J et al. (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease. Nature 382, 685691.
  • 9
    Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C et al. (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8, 487496.
  • 10
    Yamamoto Y, Harashima A, Saito H, Tsuneyama K, Munesue S, Motoyoshi S, Han D, Watanabe T, Asano M, Takasawa S et al. (2011) Septic shock is associated with receptor for advanced glycation end products ligation of LPS. J Immunol 186, 32483257.
  • 11
    Rai V, Touré F, Chitayat S, Pei R, Song F, Li Q, Zhang J, Rosario R, Ramasamy R, Chazin WJ et al. (2012) Lysophosphatidic acid targets vascular and oncogenic pathways via RAGE signaling. J Exp Med 209, 23392350.
  • 12
    Mizumoto S & Sugahara K (2013) Glycosaminoglycans are functional ligands for receptor for advanced glycation end-products in tumors. FEBS J 280, 24622470.
  • 13
    Ruan BH, Li X, Winkler AR, Cunningham KM, Kuai J, Greco RM, Nocka KH, Fitz LJ, Wright JF, Pittman DD et al. (2010) Complement C3a, CpG oligos, and DNA/C3a complex stimulate IFN-α production in a receptor for advanced glycation end product-dependent manner. J Immunol 185, 42134222.
  • 14
    Ma W, Rai V, Hudson BI, Song F, Schmidt AM & Barile GR (2012) RAGE binds C1q and enhances C1q-mediated phagocytosis. Cell Immunol 274, 7282.
  • 15
    Chavakis T, Bierhaus A, Al-Fakhri N, Schneider D, Witte S, Linn T, Nagashima M, Morser J, Arnold B, Preissner KT et al. (2003) The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med 198, 15071515.
  • 16
    Yan SF, Ramasamy R, Naka Y & Schmidt AM (2003) Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications of diabetes and beyond. Circ Res 93, 11591169.
  • 17
    Salama I, Malone PS, Mihaimeed F & Jones JL (2008) A review of the S100 proteins in cancer. Eur J Surg Oncol 34, 357364.
  • 18
    Ulloa L & Messmer D (2006) High-mobility group box 1 (HMGB1) protein: friend and foe. Cytokine Growth Factor Rev 17, 189201.
  • 19
    Stern D, Yan SD, Yan SF & Schmidt AM (2002) Receptor for advanced glycation endproducts: a multiligand receptor magnifying cell stress in diverse pathologic settings. Adv Drug Deliv Rev 54, 16151625.
  • 20
    Hudson BI, Kalea AZ, Del Mar Arriero M, Harja E, Boulanger E, D'Agati V & Schmidt AM (2008) Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. J Biol Chem 283, 3445734468.
  • 21
    Sakaguchi M, Murata H, Yamamoto K, Ono T, Sakaguchi Y, Motoyama A, Hibino T, Kataoka K & Huh NH (2011) TIRAP, an adaptor protein for TLR2/4, transduces a signal from RAGE phosphorylated upon ligand binding. PLoS One 6, e23132.
  • 22
    Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM & Nawroth PP (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl) 83, 876886.
  • 23
    Sorci G, Riuzzi F, Giambanco I & Donato R (2013) RAGE in tissue homeostasis, repair and regeneration. Biochim Biophys Acta 1833, 101109.
  • 24
    Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W, Tanji N, Lu Y, Lalla E, Fu C et al. (2000) Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405, 354360.
  • 25
    Yamagishi S, Matsui T & Nakamura K (2008) Blockade of the advanced glycation end products (AGEs) and their receptor (RAGE) system is a possible mechanism for sustained beneficial effects of multifactorial intervention on mortality in type 2 diabetes. Med Hypotheses 71, 749751.
  • 26
    Sturchler E, Galichet A, Weibel M, Leclerc E & Heizmann CW (2008) Site-specific blockade of RAGE-Vd prevents amyloid-beta oligomer neurotoxicity. J Neurosci 28, 51495158.
  • 27
    Matsumoto S, Yoshida T, Murata H, Harada S, Fujita N, Nakamura S, Yamamoto Y, Watanabe T, Yonekura H, Yamamoto H et al. (2008) Solution structure of the variable-type domain of the receptor for advanced glycation end products: new insight into AGE-RAGE interaction. Biochemistry 47, 1229912311.
  • 28
    Koch M, Chitayat S, Dattilo BM, Schiefner A, Diez J, Chazin WJ & Fritz G (2010) Structural basis for ligand recognition and activation of RAGE. Structure 18, 13421352.
  • 29
    Park H, Adsit FG & Boyington JC (2010) The 1.5 Å crystal structure of human receptor for advanced glycation endproducts (RAGE) ectodomains reveals unique features determining ligand binding. J Biol Chem 285, 4076240770.
  • 30
    Rai V, Maldonado AY, Burz DS, Reverdatto S, Yan SF, Schmidt AM & Shekhtman A (2012) Signal transduction in receptor for advanced glycation end products (RAGE): solution structure of C-terminal rage (ctRAGE) and its binding to mDia1. J Biol Chem 287, 51335144.
  • 31
    Xie J, Reverdatto S, Frolov A, Hoffmann R, Burz DS & Shekhtman A (2008) Structural basis for pattern recognition by the receptor for advanced glycation end products (RAGE). J Biol Chem 283, 2725527269.
  • 32
    Sárkány Z, Ikonen TP, Ferreira-da-Silva F, Saraiva MJ, Svergun D & Damas AM (2011) Solution structure of the soluble receptor for advanced glycation end products (sRAGE). J Biol Chem 286, 3752537534.
  • 33
    Zong H, Madden A, Ward M, Mooney MH, Elliott CT & Stitt AW (2010) Homodimerization is essential for the receptor for advanced glycation end products (RAGE)-mediated signal transduction. J Biol Chem 285, 2313723146.
  • 34
    Xie J, Burz DS, He W, Bronstein IB, Lednev I & Shekhtman A (2007) Hexameric calgranulin C (S100A12) binds to the receptor for advanced glycated end products (RAGE) using symmetric hydrophobic target-binding patches. J Biol Chem 282, 42184231.
  • 35
    Wei W, Lampe L, Park S, Vangara BS, Waldo GS, Cabantous S, Subaran SS, Yang D, Lakatta EG & Lin L (2012) Disulfide bonds within the C2 domain of RAGE play key roles in its dimerization and biogenesis. PLoS One 7, e50736.
  • 36
    Xu D, Young JH, Krahn JM, Song D, Corbett KD, Chazin WJ, Pedersen LC & Esko JD (2013) Stable RAGE-heparan sulfate complexes are essential for signal transduction. ACS Chem Biol 8, 16111620.
  • 37
    Dattilo BM, Fritz G, Leclerc E, Kooi CW, Heizmann CW & Chazin WJ (2007) The extracellular region of the receptor for advanced glycation end products is composed of two independent structural units. Biochemistry 46, 69576970.
  • 38
    Krissinel E & Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372, 774797.
  • 39
    Kupniewska-Kozak A, Gospodarska E & Dadlez M (2010) Intertwined structured and unstructured regions of exRAGE identified by monitoring hydrogen-deuterium exchange. J Mol Biol 403, 5265.
  • 40
    Srikrishna G, Huttunen HJ, Johansson L, Weigle B, Yamaguchi Y, Rauvala H & Freeze HH (2002) N-Glycans on the receptor for advanced glycation end products influence amphoterin binding and neurite outgrowth. J Neurochem 80, 9981008.
  • 41
    Hanford LE, Enghild JJ, Valnickova Z, Petersen SV, Schaefer LM, Schaefer TM, Reinhart TA & Oury TD (2004) Purification and characterization of mouse soluble receptor for advanced glycation end products (sRAGE). J Biol Chem 279, 5001950024.
  • 42
    Bohne-Lang A & von der Lieth CW (2005) Glyprot: in silico glycosylation of proteins. Nucleic Acids Res 33, W214W219.
  • 43
    Geroldi D, Falcone C & Emanuele E (2006) Soluble receptor for advanced glycation end products: from disease marker to potential therapeutic target. Curr Med Chem 13, 19711978.
  • 44
    Russ WP & Engelman DM (2000) The GxxxG motif: a framework for transmembrane helix-helix association. J Mol Biol 296, 911919.
  • 45
    Cymer F, Veerappan A & Schneider D (2012) Transmembrane helix-helix interactions are modulated by the sequence context and by lipid bilayer properties. Biochim Biophys Acta 1818, 963973.
  • 46
    MacKenzie KR, Prestegard JH & Engelman DM (1997) A transmembrane helix dimer: structure and implications. Science 276, 131133.
  • 47
    Frommhold D, Kamphues A, Hepper I, Pruenster M, Lukic IK, Socher I, Zablotskaya V, Buschmann K, Lange-Sperandio B, Schymeinsky J et al. (2010) RAGE and ICAM-1 cooperate in mediating leukocyte recruitment during acute inflammation in vivo. Blood 116, 841849.
  • 48
    Yang Y, Jun CD, Liu JH, Zhang R, Joachimiak A, Springer TA & Wang JH (2004) Structural basis for dimerization of ICAM-1 on the cell surface. Mol Cell 14, 269276.
  • 49
    Kabsch W (1993) Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J Appl Crystallogr 26, 795800.
  • 50
    McCoy AJ, Grosse-Kunstleve RW, Storoni LC & Read RJ (2005) Likelihood-enhanced fast translation functions. Acta Crystallogr D Biol Crystallogr 61, 458464.
  • 51
    Adams PD, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, Moriarty NW, Read RJ, Sacchettini JC, Sauter NK & Terwilliger TC (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58, 19481954.
  • 52
    Emsley P & Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 21262132.
  • 53
    Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB III, Snoeyink J, Richardson JS et al. (1997) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35, W375W383.
  • 54
    Baker NA, Sept D, Joseph S, Holst MJ & McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98, 1003710041.