SEARCH

SEARCH BY CITATION

References

  • 1
    Bosgraaf L & Van Haastert PJ (2003) Roc, a Ras/GTPase domain in complex proteins. Biochim Biophys Acta 1643, 510.
  • 2
    Lewis PA (2009) The function of ROCO proteins in health and disease. Biol Cell 101, 183191.
  • 3
    Lewis PA & Manzoni C (2012) LRRK2 and human disease: a complicated question or a question of complexes? Science Signaling 5, pe2.
  • 4
    Sakabe T, Shinomiya T, Mori T, Ariyama Y, Fukuda Y, Fujiwara T, Nakamura Y & Inazawa J (1999) Identification of a novel gene, MASL1, within an amplicon at 8p23.1 detected in malignant fibrous histiocytomas by comparative genomic hybridization. Cancer Res 59, 511515.
  • 5
    Tagawa H, Karnan S, Kasugai Y, Tuzuki S, Suzuki R, Hosokawa Y & Seto M (2004) MASL1, a candidate oncogene found in amplification at 8p23.1, is translocated in immunoblastic B-cell lymphoma cell line OCI-LY8. Oncogene 23, 25762581.
  • 6
    Yang S, Jeung HC, Jeong HJ, Choi YH, Kim JE, Jung JJ, Rha SY, Yang WI & Chung HC (2007) Identification of genes with correlated patterns of variations in DNA copy number and gene expression level in gastric cancer. Genomics 89, 451459.
  • 7
    Weng WH, Wejde J, Ahlen J, Pang ST, Lui WO & Larsson C (2004) Characterization of large chromosome markers in a malignant fibrous histiocytoma by spectral karyotyping, comparative genomic hybridization (CGH), and array CGH. Cancer Genet Cytogenet 150, 2732.
  • 8
    Korr D, Toschi L, Donner P, Pohlenz HD, Kreft B & Weiss B (2006) LRRK1 protein kinase activity is stimulated upon binding of GTP to its Roc domain. Cell Signal 18, 910920.
  • 9
    Ito G, Okai T, Fujino G, Takeda K, Ichijo H, Katada T & Iwatsubo T (2007) GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson's disease. Biochemistry 46, 13801388.
  • 10
    Carlessi R, Levin-Salomon V, Ciprut S, Bialik S, Berissi H, Albeck S, Peleg Y & Kimchi A (2011) GTP binding to the ROC domain of DAP-kinase regulates its function through intramolecular signalling. EMBO Repts 12, 917923.
  • 11
    Taymans JM, Vancraenenbroeck R, Ollikainen P, Beilina A, Lobbestael E, De Maeyer M, Baekelandt V & Cookson MR (2011) LRRK2 kinase activity is dependent on LRRK2 GTP binding capacity but independent of LRRK2 GTP binding. PLoS ONE 6, e23207.
  • 12
    Jebelli JD, Dihanich S, Civiero L, Manzoni C, Greggio E & Lewis PA (2012) GTP binding and intramolecular regulation by the ROC domain of death associated protein kinase 1. Sci Rep 2, 695.
  • 13
    Gotthardt K, Weyand M, Kortholt A, Van Haastert PJ & Wittinghofer A (2008) Structure of the Roc-COR domain tandem of C. tepidum, a prokaryotic homologue of the human LRRK2 Parkinson kinase. EMBO J 27, 2352.
  • 14
    Lewis PA, Greggio E, Beilina A, Jain S, Baker A & Cookson MR (2007) The R1441C mutation of LRRK2 disrupts GTP hydrolysis. Biochem Biophys Res Commun 357, 668671.
  • 15
    Menard L, Tomhave E, Casey PJ, Uhing RJ, Snyderman R & Didsbury JR (1992) Rac1, a low-molecular-mass GTP-binding-protein with high intrinsic GTPase activity and distinct biochemical properties. Eur J Biochem/FEBS J 206, 537546.
  • 16
    Klein CL, Rovelli G, Springer W, Schall C, Gasser T & Kahle PJ (2009) Homo- and heterodimerization of ROCO kinases: LRRK2 kinase inhibition by the LRRK2 ROCO fragment. J Neurochem 111, 703715.
  • 17
    Greggio E, Zambrano I, Kaganovich A, Beilina A, Taymans JM, Daniels V, Lewis P, Jain S, Ding J, Syed A, et al. (2008) The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation. J Biol Chem 283, 1690616914.
  • 18
    Civiero L, Vancraenenbroeck R, Belluzzi E, Beilina A, Lobbestael E, Reyniers L, Gao F, Micetic I, De Maeyer M, Bubacco L, et al. (2012) Biochemical characterization of highly purified leucine-rich repeat kinases 1 and 2 demonstrates formation of homodimers. PLoS ONE 7, e43472.
  • 19
    Piccoli G, Condliffe SB, Bauer M, Giesert F, Boldt K, De Astis S, Meixner A, Sarioglu H, Vogt-Weisenhorn DM & Wurst W et al. (2011) LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool. J Neurosci 31, 22252237.
  • 20
    Biskup S, Moore DJ, Celsi F, Higashi S, West AB, Andrabi SA, Kurkinen K, Yu SW, Savitt JM & Waldvogel HJ et al. (2006) Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann Neurol 60, 557569.
  • 21
    Hanafusa H, Ishikawa K, Kedashiro S, Saigo T, Iemura S, Natsume T, Komada M, Shibuya H, Nara A & Matsumoto K (2011) Leucine-rich repeat kinase LRRK1 regulates endosomal trafficking of the EGF receptor. Nat Commun 2, 158.
  • 22
    Greggio E, Lewis PA, van der Brug MP, Ahmad R, Kaganovich A, Ding J, Beilina A, Baker AK & Cookson MR (2007) Mutations in LRRK2/dardarin associated with Parkinson disease are more toxic than equivalent mutations in the homologous kinase LRRK1. J Neurochem 102, 93102.
  • 23
    Smith WW, Pei Z, Jiang H, Dawson VL, Dawson TM & Ross CA (2006) Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci 9, 12311233.
  • 24
    Cohen O, Feinstein E & Kimchi A (1997) DAP-kinase is a Ca2+/calmodulin-dependent, cytoskeletal-associated protein kinase, with cell death-inducing functions that depend on its catalytic activity. EMBO J 16, 9981008.
  • 25
    Berger Z, Smith KA & Lavoie MJ (2010) Membrane localization of LRRK2 is associated with increased formation of the highly active LRRK2 dimer and changes in its phosphorylation. Biochemistry 49, 55115523.
  • 26
    Gasper R, Meyer S, Gotthardt K, Sirajuddin M & Wittinghofer A (2009) It takes two to tango: regulation of G proteins by dimerization. Nat Rev Mol Cell Biol 10, 423429.
  • 27
    Wang L, Xie C, Greggio E, Parisiadou L, Shim H, Sun L, Chandran J, Lin X, Lai C, Yang WJ, et al. (2008) The chaperone activity of heat shock protein 90 is critical for maintaining the stability of leucine-rich repeat kinase 2. J Neurosci 28, 33843391.
  • 28
    Ng AC, Eisenberg JM, Heath RJ, Huett A, Robinson CM, Nau GJ & Xavier RJ (2011) Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity. Proc Natl Acad Sci U S A 108 (Suppl. 1), 46314638.
  • 29
    Kumkhaek C, Aerbajinai W, Liu W, Zhu J, Uchida N, Kurlander R, Hsieh MM, Tisdale JF & Rodgers GP (2013) MASL1 induces erythroid differentiation in human erythropoietin-dependent CD34 +  cells through the Raf/MEK/ERK pathway. Blood 121, 32163227.
  • 30
    Gardet A, Benita Y, Li C, Sands BE, Ballester I, Stevens C, Korzenik JR, Rioux JD, Daly MJ, Xavier RJ, et al. (2010) LRRK2 is involved in the IFN-gamma response and host response to pathogens. J Immunol 185, 55775585.
  • 31
    Moehle MS, Webber PJ, Tse T, Sukar N, Standaert DG, DeSilva TM, Cowell RM & West AB (2012) LRRK2 inhibition attenuates microglial inflammatory responses. J Neurosci 32, 16021611.
  • 32
    Dzamko N, Inesta-Vaquera F, Zhang J, Xie C, Cai H, Arthur S, Tan L, Choi H, Gray N, Cohen P, et al. (2012) The IkappaB kinase family phosphorylates the Parkinson's disease kinase LRRK2 at Ser935 and Ser910 during Toll-like receptor signaling. PLoS ONE 7, e39132.
  • 33
    Greggio E, Civiero L, Bisaglia M & Bubacco L (2012) Parkinson's disease and immune system: is the culprit LRRKing in the periphery? J Neuroinflammation 9, 94.