SEARCH

SEARCH BY CITATION

References

  • 1
    Monod J (1942) Recherches sur la Croissance des Cultures Bactériennes. PhD Thesis, Hermann et Cie, Paris.
  • 2
    Stulke J & Hillen W (1999) Carbon catabolite repression in bacteria. Curr Opin Microbiol 2, 195201.
  • 3
    Wolff JA, MacGregor CH, Eisenberg RC & Phibbs PV Jr (1991) Isolation and characterization of catabolite repression control mutants of Pseudomonas aeruginosa PAO. J Bacteriol 173, 47004706.
  • 4
    Rojo F (2010) Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev 34, 658684.
  • 5
    Mahajan MC, Phale PS & Vaidyanathan CS (1994) Evidence for the involvement of multiple pathways in the biodegradation of 1- and 2-methylnaphthalene by Pseudomonas putida CSV86. Arch Microbiol 161, 425433.
  • 6
    Basu A, Dixit SS & Phale PS (2003) Metabolism of benzyl alcohol via catechol ortho-pathway in methylnaphthalene-degrading Pseudomonas putida CSV86. Appl Microbiol Biotechnol 62, 579585.
  • 7
    Shrivastava R, Basu A & Phale PS (2011) Purification and characterization of benzyl alcohol- and benzaldehyde-dehydrogenase from Pseudomonas putida CSV86. Arch Microbiol 193, 553563.
  • 8
    Shrivastava R, Purohit H & Phale PS (2011) Metabolism and preferential utilization of phenylacetic acid and 4-hydroxyphenylacetic acid in Pseudomonas putida CSV86. J Bioremed Biodeg 2, 120.
  • 9
    Phale PS, Paliwal V, Raju SC, Modak A & Purohit HJ (2013) Genome sequence of naphthalene degrading soil bacterium Pseudomonas putida CSV86. Genome Announc 1, e00234-12.
  • 10
    Basu A, Apte SK & Phale PS (2006) Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86. Appl Environ Microbiol 72, 22262230.
  • 11
    Shrivastava R, Basu B, Godbole A, Mathew MK, Apte SK & Phale PS (2011) Repression of the glucose-inducible outer-membrane protein OprB during utilization of aromatic compounds and organic acids in Pseudomonas putida CSV86. Microbiology 157, 15311540.
  • 12
    Basu A, Shrivastava R, Basu B, Apte SK & Phale PS (2007) Modulation of glucose transport causes preferential utilization of aromatic compounds in Pseudomonas putida CSV86. J Bacteriol 189, 75567562.
  • 13
    Basu A & Phale PS (2006) Inducible uptake and metabolism of glucose by the phosphorylative pathway in Pseudomonas putida CSV86. FEMS Microbiol Lett 259, 311316.
  • 14
    Neiditch MB, Federle MJ, Pompeani AJ, Kelly RC, Swem DL, Jeffrey PD, Bassler BL & Hughson FM (2006) Ligand-induced asymmetry in histidine sensor kinase complex regulates quorum sensing. Cell 126, 10951108.
  • 15
    Gonin S, Arnoux P, Pierru B, Lavergne J, Alonso B, Sabaty M & Pignol D (2007) Crystal structures of an extracytoplasmic solute receptor from a TRAP transporter in its open and closed forms reveal a helix-swapped dimer requiring a cation for α-keto acid binding. BMC Struct Biol 7, 11.
  • 16
    Mulligan C, Geertsma ER, Severi E, Kelly DJ, Poolman B & Thomas GH (2009) The substrate-binding protein imposes directionality on an electrochemical sodium gradient-driven TRAP transporter. Proc Natl Acad Sci USA 106, 17781783.
  • 17
    Armstrong N & Gouaux E (2000) Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron 28, 165181.
  • 18
    Fukami-Kobayashi K, Tateno Y & Nishikawa K (1999) Domain dislocation: a change of core structure in periplasmic binding proteins in their evolutionary history. J Mol Biol 286, 279290.
  • 19
    Quiocho FA & Ledvina PS (1996) Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol Microbiol 20, 1725.
  • 20
    Berntsson RP, Smits SH, Schmitt L, Slotboom DJ & Poolman B (2010) A structural classification of substrate-binding proteins. FEBS Lett 584, 26062617.
  • 21
    Flocco MM & Mowbray SL (1994) The 1.9 Å X-ray structure of a closed unliganded form of the periplasmic glucose/galactose receptor from Salmonella typhimurium. J Biol Chem 269, 89318936.
  • 22
    Quiocho FA (1991) Atomic structures and function of periplasmic receptors for active transport and chemotaxis. Curr Opin Struct Biol 1, 922933.
  • 23
    Cuneo MJ, Changela A, Warren JJ, Beese LS & Hellinga HW (2006) The crystal structure of a thermophilic glucose binding protein reveals adaptations that interconvert mono and di-saccharide binding sites. J Mol Biol 362, 259270.
  • 24
    Mattle D, Zeltina A, Woo JS, Goetz BA & Locher KP (2010) Two stacked heme molecules in the binding pocket of the periplasmic heme-binding protein HmuT from Yersinia pestis. J Mol Biol 404, 220231.
  • 25
    Mao B, Pear MR, McCammon JA & Quiocho FA (1982) Hinge-bending in l-arabinose-binding protein. The ‘Venus's-flytrap’ model. J Biol Chem 257, 11311133.
  • 26
    Stinson MW, Cohen MA & Merrick JM (1977) Purification and properties of the periplasmic glucose-binding protein of Pseudomonas aeruginosa. J Bacteriol 131, 672681.
  • 27
    Adewoye LO, Tschetter L, O'Neil J & Worobec EA (1998) Channel specificity and secondary structure of the glucose-inducible porins of Pseudomonas spp. J Bioenerg Biomembr 30, 257267.
  • 28
    Whiting PH, Midgley M & Dawes EA (1976) The regulation of transport of glucose, gluconate and 2-oxogluconate and of glucose catabolism in Pseudomonas aeruginosa. Biochem J 154, 659668.
  • 29
    Schleissner C, Reglero A & Luengo JM (1997) Catabolism of d-glucose by Pseudomonas putida U occurs via extracellular transformation into d-gluconic acid and induction of a specific gluconate transport system. Microbiology 143, 15951603.
  • 30
    Davidson AL, Shuman HA & Nikaido H (1992) Mechanism of maltose transport in Escherichia coli: transmembrane signaling by periplasmic binding proteins. Proc Natl Acad Sci USA 89, 23602364.
  • 31
    Khare D, Oldham ML, Orelle C, Davidson AL & Chen J (2009) Alternating access in maltose transporter mediated by rigid-body rotations. Mol Cell 33, 528536.
  • 32
    Tam R & Saier MH Jr (1993) Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 57, 320346.
  • 33
    Vyas MN, Vyas NK & Quiocho FA (1994) Crystallographic analysis of the epimeric and anomeric specificity of the periplasmic transport/chemosensory protein receptor for d-glucose and d-galactose. Biochemistry 33, 47624768.
  • 34
    Sack JS, Saper MA & Quiocho FA (1989) Periplasmic binding protein structure and function. Refined X-ray structures of the leucine/isoleucine/valine-binding protein and its complex with leucine. J Mol Biol 206, 171191.
  • 35
    Heddle J, Scott DJ, Unzai S, Park SY & Tame JR (2003) Crystal structures of the liganded and unliganded nickel-binding protein NikA from Escherichia coli. J Biol Chem 278, 5032250329.
  • 36
    Sambrook J & Russell DW (1989) Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • 37
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.
  • 38
    Hoshino T & Kageyama M (1980) Purification and properties of a binding protein for branched-chain amino acids in Pseudomonas aeruginosa. J Bacteriol 141, 10551063.
  • 39
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248254.
  • 40
    Roy A, Kucukural A & Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5, 725738.
  • 41
    Krissinel E & Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr 60, 22562268.
  • 42
    Emsley P & Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 21262132.
  • 43
    Morris GM, Huey R & Olson AJ (2008) Using AutoDock for ligand–receptor docking. Curr Protoc Bioinformatics 24, 8.14.18.14.40.