SEARCH

SEARCH BY CITATION

References

  • 1
    Fenn JB, Mann M, Meng CK, Wong SF & Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 6471.
  • 2
    Karas M, Bachmann D, Bahr U & Hillenkamp F (1987) Matrix-assisted laser desorption ionization mass spectrometry. Int J Mass Spectrom Ion Proc 78, 5358.
  • 3
    Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y & Yoshida T (1988) Laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2, 151153.
  • 4
    Benesch JL & Ruotolo BT (2011) Mass spectrometry: come of age for structural and dynamical biology. Curr Opin Struct Biol 21, 641649.
  • 5
    Konijnenberg A, Butterer A & Sobott F (2013) Native ion mobility-mass spectrometry and related methods in structural biology. Biochim Biophys Acta 1834, 12391256.
  • 6
    Serpa JJ, Parker CE, Petrotchenko EV, Han J, Pan J & Borchers CH (2012) Mass spectrometry-based structural proteomics. Eur J Mass Spectrom 18, 251267.
  • 7
    Robinson CV, Chung EW, Kragelund BB, Knudsen J, Aplin RT, Poulsen FM & Dobson CM (1996) Probing the nature of noncovalent interactions by mass spectrometry. a study of protein–CoA ligand binding and assembly. J Am Chem Soc 118, 86468653.
  • 8
    Wu Q, Bruce JE, Smith RD, Gao J, Joseph-McCarthy D, Sigal GB & Whitesides GM (1997) Carbonic anhydrase-inhibitor binding: from solution to the gas phase. J Am Chem Soc 119, 11571158.
  • 9
    Heck AJ (2008) Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods 5, 927933.
  • 10
    Rostom AA, Fucini P, Benjamin DR, Juenemann R, Nierhaus KH, Hartl FU, Dobson CM & Robinson CV (2000) Detection and selective dissociation of intact ribosomes in a mass spectrometer. Proc Natl Acad Sci USA 97, 51855190.
  • 11
    Sharon M & Robinson CV (2007) The role of mass spectrometry in structure elucidation of dynamic protein complexes. Annu Rev Biochem 76, 167193.
  • 12
    Gingras AC, Gstaiger M, Raught B & Aebersold R (2007) Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol 8, 645654.
  • 13
    Cox J & Mann M (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem 80, 273299.
  • 14
    Oeljeklaus S, Meyer HE & Warscheid B (2009) New dimensions in the study of protein complexes using quantitative mass spectrometry. FEBS Lett 583, 16741683.
  • 15
    Bessonov S, Anokhina M, Krasauskas A, Golas MM, Sander B, Will CL, Urlaub H, Stark H & Luhrmann R (2010) Characterization of purified human Bact spliceosomal complexes reveals compositional and morphological changes during spliceosome activation and first step catalysis. RNA 16, 23842403.
  • 16
    Schmidt C, Lenz C, Grote M, Luhrmann R & Urlaub H (2010) Determination of protein stoichiometry within protein complexes using absolute quantification and multiple reaction monitoring. Anal Chem 82, 27842796.
  • 17
    Smits AH, Jansen PW, Poser I, Hyman AA & Vermeulen M (2013) Stoichiometry of chromatin-associated protein complexes revealed by label-free quantitative mass spectrometry-based proteomics. Nucleic Acids Res, 41, e28.
  • 18
    Vermeulen M, Eberl HC, Matarese F, Marks H, Denissov S, Butter F, Lee KK, Olsen JV, Hyman AA, Stunnenberg HG, et al. (2010) Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142, 967980.
  • 19
    Skarra DV, Goudreault M, Choi H, Mullin M, Nesvizhskii AI, Gingras AC & Honkanen RE (2011) Label-free quantitative proteomics and SAINT analysis enable interactome mapping for the human Ser/Thr protein phosphatase 5. Proteomics 1, 15081516.
  • 20
    Zhang Z & Smith DL (1993) Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. Protein Sci 2, 522531.
  • 21
    Miranker A, Robinson CV, Radford SE, Aplin RT & Dobson CM (1993) Detection of transient protein folding populations by mass spectrometry. Science 262, 896900.
  • 22
    Marcsisin SR & Engen JR (2010) Hydrogen exchange mass spectrometry: what is it and what can it tell us? Anal Bioanal Chem 397, 967972.
  • 23
    Englander SW & Kallenbach NR (1983) Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys 16, 521655.
  • 24
    Pan J, Han J, Borchers CH & Konermann L (2009) Hydrogen/deuterium exchange mass spectrometry with top-down electron capture dissociation for characterizing structural transitions of a 17 kDa protein. J Am Chem Soc 131, 1280112808.
  • 25
    Rand KD, Adams CM, Zubarev RA & Jorgensen JT (2008) Electron capture dissociation proceeds with a low degree of intramolecular migration of peptide amide hydrogens. J Am Chem Soc 130, 13411349.
  • 26
    Rand KD, Zehl M, Jensen ON & Jorgensen TJ (2009) Protein hydrogen exchange measured at single-residue resolution by electron transfer dissociation mass spectrometry. Anal Chem 81, 55775584.
  • 27
    Nemirovskiy O, Giblin DE & Gross ML (1999) Electrospray ionization mass spectrometry and hydrogen/deuterium exchange for probing the interaction of calmodulin with calcium. J Am Soc Mass Spectrom 10, 711718.
  • 28
    Lanman J, Lam TT, Emmett MR, Marshall AG, Sakalian M & Prevelige PE Jr (2004) Key interactions in HIV-1 maturation identified by hydrogen–deuterium exchange. Nat Struct Mol Biol 11, 676677.
  • 29
    Mehmood S, Domene C, Forest E & Jault JM (2012) Dynamics of a bacterial multidrug ABC transporter in the inward- and outward-facing conformations. Proc Natl Acad Sci USA 109, 1083210836.
  • 30
    Kiselar JG & Chance MR (2010) Future directions of structural mass spectrometry using hydroxyl radical footprinting. J Mass Spectrom 45, 13731382.
  • 31
    Xu G & Chance MR (2007) Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chem Rev 107, 35143543.
  • 32
    Chance MR, Sclavi B, Woodson SA & Brenowitz M (1997) Examining the conformational dynamics of macromolecules with time-resolved synchrotron X-ray ‘footprinting’. Structure 5, 865869.
  • 33
    Stocks BB & Konermann L (2010) Time-dependent changes in side-chain solvent accessibility during cytochrome c folding probed by pulsed oxidative labeling and mass spectrometry. J Mol Biol 398, 362373.
  • 34
    Xu G & Chance MR (2004) Radiolytic modification of acidic amino acid residues in peptides: probes for examining protein–protein interactions. Anal Chem 76, 12131221.
  • 35
    Guan JQ, Vorobiev S, Almo SC & Chance MR (2002) Mapping the G-actin binding surface of cofilin using synchrotron protein footprinting. Biochemistry 41, 57655775.
  • 36
    Ashish, Paine MS, Perryman PB, Yang L, Yin HL & Krueger JK (2007) Global structure changes associated with Ca2+ activation of full-length human plasma gelsolin. J Biol Chem 282, 2588425892.
  • 37
    Padayatti PS, Wang L, Gupta S, Orban T, Sun W, Salom D, Jordan SR, Palczewski K & Chance MR (2013) A hybrid structural approach to analyze ligand binding by the serotonin type 4 receptor (5-HT4). Mol Cell Proteomics 12, 12591271.
  • 38
    Rappsilber J (2011) The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. J Struct Biol 173, 530540.
  • 39
    Sinz A (2006) Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein–protein interactions. Mass Spectrom Rev 25, 663682.
  • 40
    Paramelle D, Miralles G, Subra G & Martinez J (2013) Chemical cross-linkers for protein structure studies by mass spectrometry. Proteomics 13, 438456.
  • 41
    Pearson KM, Pannell LK & Fales HM (2002) Intramolecular cross-linking experiments on cytochrome c and ribonuclease A using an isotope multiplet method. Rapid Commun Mass Spectrom 16, 149159.
  • 42
    Gotze M, Pettelkau J, Schaks S, Bosse K, Ihling CH, Krauth F, Fritzsche R, Kuhn U & Sinz A (2012) StavroX – a software for analyzing crosslinked products in protein interaction studies. J Am Soc Mass Spectrom 23, 7687.
  • 43
    Walzthoeni T, Claassen M, Leitner A, Herzog F, Bohn S, Forster F, Beck M & Aebersold R (2012) False discovery rate estimation for cross-linked peptides identified by mass spectrometry. Nat Methods 9, 901903.
  • 44
    Xu H, Hsu PH, Zhang L, Tsai MD & Freitas MA (2010) Database search algorithm for identification of intact cross-links in proteins and peptides using tandem mass spectrometry. J Proteome Res 9, 33843393.
  • 45
    Herzog F, Kahraman A, Boehringer D, Mak R, Bracher A, Walzthoeni T, Leitner A, Beck M, Hartl FU, Ban N, et al. (2012) Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry. Science 337, 13481352.
  • 46
    Chen ZA, Jawhari A, Fischer L, Buchen C, Tahir S, Kamenski T, Rasmussen M, Lariviere L, Bukowski-Wills JC, Nilges M, et al. (2010) Architecture of the RNA polymerase II–TFIIF complex revealed by cross-linking and mass spectrometry. EMBO J 29, 717726.
  • 47
    Schmidt C, Zhou M, Marriott H, Morgner N, Politis A & Robinson CV (2013) Comparative cross-linking and mass spectrometry of an intact F-type ATPase suggest a role for phosphorylation. Nat Commun, 4, 1985.
  • 48
    Fischer L, Chen ZA & Rappsilber J (2013) Quantitative cross-linking/mass spectrometry using isotope-labelled cross-linkers. J Proteomics 88, 120128.
  • 49
    Schwarz R, Tanzler D, Ihling CH, Muller MQ, Kolbel K & Sinz A (2013) Monitoring conformational changes in peroxisome proliferator-activated receptor alpha by a genetically encoded photoamino acid, cross-linking, and mass spectrometry. J Med Chem 56, 42524263.
  • 50
    Suchanek M, Radzikowska A & Thiele C (2005) Photo-leucine and photo-methionine allow identification of protein–protein interactions in living cells. Nat Methods 2, 261267.
  • 51
    Schmidt C, Kramer K & Urlaub H (2012) Investigation of protein–RNA interactions by mass spectrometry – techniques and applications. J Proteomics 75, 34783494.
  • 52
    Urlaub H, Hartmuth K, Kostka S, Grelle G & Luhrmann R (2000) A general approach for identification of RNA–protein cross-linking sites within native human spliceosomal small nuclear ribonucleoproteins (snRNPs). Analysis of RNA–protein contacts in native U1 and U4/U6.U5 snRNPs. J Biol Chem 275, 4145841468.
  • 53
    Urlaub H, Raker VA, Kostka S & Luhrmann R (2001) Sm protein–Sm site RNA interactions within the inner ring of the spliceosomal snRNP core structure. EMBO J 20, 187196.
  • 54
    Kuhn-Holsken E, Dybkov O, Sander B, Luhrmann R & Urlaub H (2007) Improved identification of enriched peptide RNA cross-links from ribonucleoprotein particles (RNPs) by mass spectrometry. Nucleic Acids Res, 35, e95.
  • 55
    Kramer K, Hummel P, Hsiao HH, Luo X, Wahl MC & Urlaub H (2011) Mass-spectrometric analysis of proteins cross-linked to 4-thio-uracil- and 5-bromo-uracil-substituted RNA. Int J Mass Spectrom 304, 184194.
  • 56
    Uetrecht C, Versluis C, Watts NR, Roos WH, Wuite GJ, Wingfield PT, Steven AC & Heck AJ (2008) High-resolution mass spectrometry of viral assemblies: molecular composition and stability of dimorphic hepatitis B virus capsids. Proc Natl Acad Sci USA 105, 92169220.
  • 57
    Zhou M, Morgner N, Barrera NP, Politis A, Isaacson SC, Matak-Vinkovic D, Murata T, Bernal RA, Stock D & Robinson CV (2011) Mass spectrometry of intact V-type ATPases reveals bound lipids and the effects of nucleotide binding. Science 334, 380385.
  • 58
    Sobott F, Hernandez H, McCammon MG, Tito MA & Robinson CV (2002) A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal Chem 74, 14021407.
  • 59
    Rose RJ, Damoc E, Denisov E, Makarov A & Heck AJ (2012) High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat Methods 9, 10841086.
  • 60
    Ebong IO, Morgner N, Zhou M, Saraiva MA, Daturpalli S, Jackson SE & Robinson CV (2011) Heterogeneity and dynamics in the assembly of the heat shock protein 90 chaperone complexes. Proc Natl Acad Sci USA 108, 1793917944.
  • 61
    Ruotolo BT, Giles K, Campuzano I, Sandercock AM, Bateman RH & Robinson CV (2005) Evidence for macromolecular protein rings in the absence of bulk water. Science 310, 16581661.
  • 62
    Pukala TL, Ruotolo BT, Zhou M, Politis A, Stefanescu R, Leary JA & Robinson CV (2009) Subunit architecture of multiprotein assemblies determined using restraints from gas-phase measurements. Structure 17, 12351243.
  • 63
    van Duijn E, Barbu IM, Barendregt A, Jore MM, Wiedenheft B, Lundgren M, Westra ER, Brouns SJ, Doudna JA, van der Oost J, et al. (2012) Native tandem and ion mobility mass spectrometry highlight structural and modular similarities in clustered-regularly-interspaced shot-palindromic-repeats (CRISPR)-associated protein complexes from Escherichia coli and Pseudomonas aeruginosa. Mol Cell Proteomics 11, 14301441.
  • 64
    Alber F, Forster F, Korkin D, Topf M & Sali A (2008) Integrating diverse data for structure determination of macromolecular assemblies. Annu Rev Biochem 77, 443477.
  • 65
    Aloy P, Bottcher B, Ceulemans H, Leutwein C, Mellwig C, Fischer S, Gavin AC, Bork P, Superti-Furga G, Serrano L, et al. (2004) Structure-based assembly of protein complexes in yeast. Science 303, 20262029.
  • 66
    Tovchigrechko A, Wells CA & Vakser IA (2002) Docking of protein models. Protein Sci 11, 18881896.
  • 67
    Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, Devos D, Suprapto A, Karni-Schmidt O, Williams R, Chait BT, et al. (2007) The molecular architecture of the nuclear pore complex. Nature 450, 695701.
  • 68
    Lasker K, Forster F, Bohn S, Walzthoeni T, Villa E, Unverdorben P, Beck F, Aebersold R, Sali A & Baumeister W (2012) Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci USA 109, 13801387.
  • 69
    Politis A, Park AY, Hall Z, Ruotolo BT & Robinson CV (2013) Integrative modelling coupled with ion mobility mass spectrometry reveals structural features of the clamp loader in complex with single-stranded DNA binding protein. J Mol Biol 425, 47904801.
  • 70
    Barrera NP, Isaacson SC, Zhou M, Bavro VN, Welch A, Schaedler TA, Seeger MA, Miguel RN, Korkhov VM, van Veen HW, et al. (2009) Mass spectrometry of membrane transporters reveals subunit stoichiometry and interactions. Nat Methods 6, 585587.
  • 71
    Marcoux J, Wang SC, Politis A, Reading E, Ma J, Biggin PC, Zhou M, Tao H, Zhang Q, Chang G, et al. (2013) Mass spectrometry reveals synergistic effects of nucleotides, lipids, and drugs binding to a multidrug resistance efflux pump. Proc Natl Acad Sci USA 110, 97049709.
  • 72
    Barrera NP, Di Bartolo N, Booth PJ & Robinson CV (2008) Micelles protect membrane complexes from solution to vacuum. Science 321, 243246.
  • 73
    Marty MT, Zhang H, Cui W, Blankenship RE, Gross ML & Sligar SG (2012) Native mass spectrometry characterization of intact nanodisc lipoprotein complexes. Anal Chem 84, 89578960.
  • 74
    Morgan CR, Hebling CM, Rand KD, Stafford DW, Jorgenson JW & Engen JR (2011) Conformational transitions in the membrane scaffold protein of phospholipid bilayer nanodiscs. Mol Cell Proteomics 10, M111 010876.
  • 75
    Hopper JT, Yu YT, Li D, Raymond A, Bostock M, Liko I, Mikhailov V, Laganowsky A, Benesch JL, Caffrey M, et al. (2013) Detergent-free mass spectrometry of membrane protein complexes. Nat Methods 10, 12061208.
  • 76
    Dyachenko A, Gruber R, Shimon L, Horovitz A & Sharon M (2013) Allosteric mechanisms can be distinguished using structural mass spectrometry. Proc Natl Acad Sci USA 110, 72357239.
  • 77
    Morgner N & Robinson CV (2012) Massign: an assignment strategy for maximizing information from the mass spectra of heterogeneous protein assemblies. Anal Chem 84, 29392948.
  • 78
    Butter F, Scheibe M, Morl M & Mann M (2009) Unbiased RNA–protein interaction screen by quantitative proteomics. Proc Natl Acad Sci USA 106, 1062610631.
  • 79
    Dimova K, Kalkhof S, Pottratz I, Ihling C, Rodriguez-Castaneda F, Liepold T, Griesinger C, Brose N, Sinz A & Jahn O (2009) Structural insights into the calmodulin–Munc13 interaction obtained by cross-linking and mass spectrometry. Biochemistry 48, 59085921.
  • 80
    Housden NG, Hopper JT, Lukoyanova N, Rodriguez-Larrea D, Wojdyla JA, Klein A, Kaminska R, Bayley H, Saibil HR, Robinson CV, et al. (2013) Intrinsically disordered protein threads through the bacterial outer-membrane porin OmpF. Science 340, 15701574.
  • 81
    Rouillon C, Zhou M, Zhang J, Politis A, Beilsten-Edmands V, Cannone G, Graham S, Robinson CV, Spagnolo L & White MF (2013) Structure of the CRISPR interference complex CSM reveals key similarities with cascade. Mol Cell 52, 124134.
  • 82
    Gordiyenko Y, Videler H, Zhou M, McKay AR, Fucini P, Biegel E, Muller V & Robinson CV (2010) Mass spectrometry defines the stoichiometry of ribosomal stalk complexes across the phylogenetic tree. Mol Cell Proteomics 9, 17741783.
  • 83
    Ilag LL, Videler H, McKay AR, Sobott F, Fucini P, Nierhaus KH & Robinson CV (2005) Heptameric (L12)6/L10 rather than canonical pentameric complexes are found by tandem MS of intact ribosomes from thermophilic bacteria. Proc Natl Acad Sci USA 102, 81928197.
  • 84
    Davydov II, Wohlgemuth I, Artamonova II, Urlaub H, Tonevitsky AG & Rodnina MV (2013) Evolution of the protein stoichiometry in the L12 stalk of bacterial and organellar ribosomes. Nat Commun, 4, 1387.
  • 85
    Steele JA, Uchytil TF, Durbin RD, Bhatnagar P & Rich DH (1976) Chloroplast coupling factor 1: a species-specific receptor for tentoxin. Proc Natl Acad Sci USA 73, 22452248.
  • 86
    Groth G (2002) Structure of spinach chloroplast F1-ATPase complexed with the phytopathogenic inhibitor tentoxin. Proc Natl Acad Sci USA 99, 34643468.
  • 87
    Behzadnia N, Golas MM, Hartmuth K, Sander B, Kastner B, Deckert J, Dube P, Will CL, Urlaub H, Stark H, et al. (2007) Composition and three-dimensional EM structure of double affinity-purified, human prespliceosomal A complexes. EMBO J 26, 17371748.
  • 88
    Fabrizio P, Dannenberg J, Dube P, Kastner B, Stark H, Urlaub H & Luhrmann R (2009) The evolutionarily conserved core design of the catalytic activation step of the yeast spliceosome. Mol Cell 36, 593608.
  • 89
    Nikolov M, Stutzer A, Mosch K, Krasauskas A, Soeroes S, Stark H, Urlaub H & Fischle W (2011) Chromatin affinity purification and quantitative mass spectrometry defining the interactome of histone modification patterns. Mol Cell Proteomics, 10, M110 005371.
  • 90
    Wales TE & Engen JR (2006) Partial unfolding of diverse SH3 domains on a wide timescale. J Mol Biol 357, 15921604.
  • 91
    Luo X, Hsiao HH, Bubunenko M, Weber G, Court DL, Gottesman ME, Urlaub H & Wahl MC (2008) Structural and functional analysis of the E. coli NusB–S10 transcription antitermination complex. Mol Cell 32, 791802.
  • 92
    Muller M, Heym RG, Mayer A, Kramer K, Schmid M, Cramer P, Urlaub H, Jansen RP & Niessing D (2011) A cytoplasmic complex mediates specific mRNA recognition and localization in yeast. PLoS Biol 9, e1000611.