SEARCH

SEARCH BY CITATION

Keywords:

  • climatic change;
  • extreme climatic event;
  • heat stress;
  • insects;
  • trophic interactions

Abstract

Greater climatic variability and extreme climatic events are currently emerging as two of the most important facets of climate change. Predicting the effects of extreme climatic events, such as heat waves, is a major challenge because they may affect both organisms and trophic interactions, leading to complex responses at the community level. In this study, we set up a simple three-level food chain composed of a sweet pepper plant, Capsicum annuum; an aphid, Myzus persicae; and a ladybeetle, Coleomegilla maculata, to explore the consequences of simulated heat waves on organism performance, trophic interactions, and population dynamics. We found that (1) heat waves do not affect plant biomass, significantly reduce the abundance and fecundity of aphids, and slightly affect ladybeetle developmental time and biomass, (2) heat waves decrease the impact of ladybeetles on aphid populations but do not modify the effect of aphids on plant biomass, and (3) food chains including predatory ladybeetles are more resistant to heat waves than a simple plant–aphid association, with aphid abundance being less influenced by heat waves in the presence of C. maculata. Our results suggest that more biodiverse ecosystems with predators exerting a strong biotic control are likely to be less influenced by abiotic factors and then more resistant to extreme climatic events than impoverished ecosystems lacking predators. Our study emphasizes the importance of assessing the effects of climatic change on each trophic level as well as on trophic interactions to further our understanding of the stability, resilience, and resistance of ecological communities under climatic forcing.