SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Rachel Przeslawski, Maria Byrne, Camille Mellin, A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae, Global Change Biology, 2015, 21, 6
  2. 2
    V. Crego-Prieto, A. Ardura, F. Juanes, A. Roca, J. S. Taylor, E. Garcia-Vazquez, Aquaculture and the spread of introduced mussel genes in British Columbia, Biological Invasions, 2015, 17, 7, 2011

    CrossRef

  3. 3
    Riccardo Rodolfo-Metalpa, Paolo Montagna, Stefano Aliani, Mireno Borghini, Simonepietro Canese, Jason M. Hall-Spencer, Andy Foggo, Marco Milazzo, Marco Taviani, Fanny Houlbrèque, Calcification is not the Achilles’ heel of cold-water corals in an acidifying ocean, Global Change Biology, 2015, 21, 6
  4. 4
    Cristian A. Vargas, Victor M. Aguilera, Valeska San Martín, Patricio H. Manríquez, Jorge M. Navarro, Cristian Duarte, Rodrigo Torres, Marco A. Lardies, Nelson A. Lagos, CO2-Driven Ocean Acidification Disrupts the Filter Feeding Behavior in Chilean Gastropod and Bivalve Species from Different Geographic Localities, Estuaries and Coasts, 2015, 38, 4, 1163

    CrossRef

  5. 5
    Lisha Li, Weiqun Lu, Yanming Sui, Youji Wang, Yasmeen Gul, Sam Dupont, Conflicting Effects of Predator Cue and Ocean Acidification on the MusselMytilus coruscusByssus Production, Journal of Shellfish Research, 2015, 34, 2, 393

    CrossRef

  6. 6
    D.G. Jones, S.E. Beaubien, J.C. Blackford, E.M. Foekema, J. Lions, C. De Vittor, J.M. West, S. Widdicombe, C. Hauton, A.M. Queirós, Developments since 2005 in understanding potential environmental impacts of CO2 leakage from geological storage, International Journal of Greenhouse Gas Control, 2015, 40, 350

    CrossRef

  7. 7
    Karen Tait, Amanda Beesley, Helen S. Findlay, C. Louise McNeill, Stephen Widdicombe, Patricia Sobecky, Elevated CO2induces a bloom of microphytobenthos within a shell gravel mesocosm, FEMS Microbiology Ecology, 2015, 91, 8, fiv092

    CrossRef

  8. 8
    C-Elisa Schaum, Björn Rost, Sinéad Collins, Environmental stability affects phenotypic evolution in a globally distributed marine picoplankton, The ISME Journal, 2015,

    CrossRef

  9. 9
    T.-C. Francis Pan, Scott L. Applebaum, Donal T. Manahan, Experimental ocean acidification alters the allocation of metabolic energy, Proceedings of the National Academy of Sciences, 2015, 112, 15, 4696

    CrossRef

  10. 10
    Lorena Basso, Iris E. Hendriks, Alejandro B. Rodríguez-Navarro, Maria C. Gambi, Carlos M. Duarte, Extreme pH Conditions at a Natural CO2 Vent System (Italy) Affect Growth, and Survival of Juvenile Pen Shells (Pinna nobilis), Estuaries and Coasts, 2015,

    CrossRef

  11. 11
    Lalita V. Baragi, Arga Chandrashekar Anil, Interactive effect of elevated pCO2 and temperature on the larval development of an inter-tidal organism, Balanus amphitrite Darwin (Cirripedia: Thoracica), Journal of Experimental Marine Biology and Ecology, 2015, 471, 48

    CrossRef

  12. 12
    Elise A. Keppel, Ricardo A. Scrosati, Simon C. Courtenay, Interactive effects of ocean acidification and warming on subtidal mussels and sea stars from Atlantic Canada, Marine Biology Research, 2015, 11, 4, 337

    CrossRef

  13. 13
    Cristian Duarte, Jorge M. Navarro, Karin Acuña, Rodrigo Torres, Patricio H. Manríquez, Marcos A. Lardies, Cristian A. Vargas, Nelson A. Lagos, Víctor Aguilera, Intraspecific Variability in the Response of the Edible Mussel Mytilus chilensis (Hupe) to Ocean Acidification, Estuaries and Coasts, 2015, 38, 2, 590

    CrossRef

  14. 14
    Alexandre Miguel Pereira, Pedro Range, Ana Campoy, Ana Paula Oliveira, Sandra Joaquim, Domitília Matias, Luís Chícharo, Miguel Baptista Gaspar, Larval hatching and development of the wedge shell (Donax trunculus L.) under increased CO2 in southern Portugal, Regional Environmental Change, 2015,

    CrossRef

  15. 15
    Magdalena Jakubowska, Monika Normant, Metabolic rate and activity of blue musselMytilus edulis trossulusunder short-term exposure to carbon dioxide-induced water acidification and oxygen deficiency, Marine and Freshwater Behaviour and Physiology, 2015, 48, 1, 25

    CrossRef

  16. 16
    F. Noisette, J. Richard, I. Le Fur, L. S. Peck, D. Davoult, S. Martin, Metabolic responses to temperature stress under elevated pCO2 in Crepidula fornicata, Journal of Molluscan Studies, 2015, 81, 2, 238

    CrossRef

  17. 17
    Shiguo Li, Yangjia Liu, Chuang Liu, Jingliang Huang, Guilan Zheng, Liping Xie, Rongqing Zhang, Morphology and classification of hemocytes in Pinctada fucata and their responses to ocean acidification and warming, Fish & Shellfish Immunology, 2015, 45, 1, 194

    CrossRef

  18. 18
    Nicola Pratt, Benjamin J. Ciotti, Elizabeth A. Morgan, Peter Taylor, Henrik Stahl, Chris Hauton, No evidence for impacts to the molecular ecophysiology of ion or CO2 regulation in tissues of selected surface-dwelling bivalves in the vicinity of a sub-seabed CO2 release, International Journal of Greenhouse Gas Control, 2015, 38, 193

    CrossRef

  19. 19
    E. L. Cross, L. S. Peck, M. D. Lamare, E. M. Harper, No ocean acidification effects on shell growth and repair in the New Zealand brachiopod Calloria inconspicua (Sowerby, 1846), ICES Journal of Marine Science, 2015,

    CrossRef

  20. 20
    Tyler G. Evans, Jacqueline L. Padilla-Gamiño, Morgan W. Kelly, Melissa H. Pespeni, Francis Chan, Bruce A. Menge, Brian Gaylord, Tessa M. Hill, Ann D. Russell, Stephen R. Palumbi, Eric Sanford, Gretchen E. Hofmann, Ocean acidification research in the ‘post-genomic’ era: Roadmaps from the purple sea urchin Strongylocentrotus purpuratus, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2015, 185, 33

    CrossRef

  21. 21
    Brian Gaylord, Kristy J. Kroeker, Jennifer M. Sunday, Kathryn M. Anderson, James P. Barry, Norah E. Brown, Sean D Connell, Sam Dupont, Katharina E. Fabricius, Jason M. Hall-Spencer, Terrie Klinger, Marco Milazzo, Philip L. Munday, Bayden D. Russell, Eric Sanford, Sebastian J. Schreiber, Vengatesen Thiyagarajan, Megan L. H. Vaughan, Steven Widdicombe, Christopher D. G. Harley, Ocean acidification through the lens of ecological theory, Ecology, 2015, 96, 1, 3

    CrossRef

  22. 22
    Ana M. Queirós, José A. Fernandes, Sarah Faulwetter, Joana Nunes, Samuel P. S. Rastrick, Nova Mieszkowska, Yuri Artioli, Andrew Yool, Piero Calosi, Christos Arvanitidis, Helen S. Findlay, Manuel Barange, William W. L. Cheung, Stephen Widdicombe, Scaling up experimental ocean acidification and warming research: from individuals to the ecosystem, Global Change Biology, 2015, 21, 1
  23. 23
    Peter B. Marko, Emily Carrington, Rui Rosa, Folco Giomi, Sandra Troschinski, Frank Melzner, Brad A. Seibel, Symposium on “Climate Change and Molluscan Ecophysiology” at the 79thAnnual Meeting of the American Malacological Society, American Malacological Bulletin, 2015, 33, 1, 121

    CrossRef

  24. 24
    H.L. Wood, S.P. Eriksson, M. Nordborg, H.K. Styf, The effect of environmental stressors on the early development of the Norway lobster Nephrops norvegicus (L.), Journal of Experimental Marine Biology and Ecology, 2015, 473, 35

    CrossRef

  25. 25
    C Paul, B Matthiessen, U Sommer, Warming, but not enhanced CO2 concentration, quantitatively and qualitatively affects phytoplankton biomass, Marine Ecology Progress Series, 2015, 528, 39

    CrossRef

  26. 26
    Brian Helmuth, Bayden D Russell, Sean D Connell, Yunwei Dong, Christopher Harley, Fernando P Lima, Gianluca Sará, Gray A Williams, Nova Mieszkowska, Beyond long-term averages: making biological sense of a rapidly changing world, Climate Change Responses, 2014, 1, 1, 6

    CrossRef

  27. You have full text access to this Open Access content27
    Thorsten B. H. Reusch, Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants, Evolutionary Applications, 2014, 7, 1
  28. 28
    A. Matzelle, V. Montalto, G. Sarà, M. Zippay, B. Helmuth, Dynamic Energy Budget model parameter estimation for the bivalve Mytilus californianus: Application of the covariation method, Journal of Sea Research, 2014, 94, 105

    CrossRef

  29. 29
    Erik Sperfeld, Anders Mangor-Jensen, Padmini Dalpadado, Effect of increasing sea water pCO2 on the northern Atlantic krill species Nyctiphanes couchii, Marine Biology, 2014, 161, 10, 2359

    CrossRef

  30. 30
    S Bignami, S Sponaugle, RK Cowen, Effects of ocean acidification on the larvae of a high-value pelagic fisheries species, mahi-mahi Coryphaena hippurus, Aquatic Biology, 2014, 21, 3, 249

    CrossRef

  31. 31
    Jennifer M. Sunday, Piero Calosi, Sam Dupont, Philip L. Munday, Jonathon H. Stillman, Thorsten B.H. Reusch, Evolution in an acidifying ocean, Trends in Ecology & Evolution, 2014, 29, 2, 117

    CrossRef

  32. 32
    Ben Harvey, Balsam Al-Janabi, Stefanie Broszeit, Rebekah Cioffi, Amit Kumar, Maria Aranguren-Gassis, Allison Bailey, Leon Green, Carina Gsottbauer, Emilie Hall, Maria Lechler, Francesco Mancuso, Camila Pereira, Elena Ricevuto, Julie Schram, Laura Stapp, Simon Stenberg, Lindzai Rosa, Evolution of Marine Organisms under Climate Change at Different Levels of Biological Organisation, Water, 2014, 6, 11, 3545

    CrossRef

  33. You have free access to this content33
    Sabine Hahn, Erika Griesshaber, Wolfgang W. Schmahl, Rolf D. Neuser, Ann-Christine Ritter, Rene Hoffmann, Dieter Buhl, Andrea Niedermayr, Anna Geske, Adrian Immenhauser, Exploring aberrant bivalve shell ultrastructure and geochemistry as proxies for past sea water acidification, Sedimentology, 2014, 61, 6
  34. 34
    David J. Morris, Douglas C. Speirs, Angus I. Cameron, Michael R. Heath, Global sensitivity analysis of an end-to-end marine ecosystem model of the North Sea: Factors affecting the biomass of fish and benthos, Ecological Modelling, 2014, 273, 251

    CrossRef

  35. 35
    Julia D. Sigwart, Nicholas Carey, Grazing under experimental hypercapnia and elevated temperature does not affect the radula of a chiton (Mollusca, Polyplacophora, Lepidopleurida), Marine Environmental Research, 2014, 102, 73

    CrossRef

  36. 36
    Christian Pansch, Iris Schaub, Jonathan Havenhand, Martin Wahl, Habitat traits and food availability determine the response of marine invertebrates to ocean acidification, Global Change Biology, 2014, 20, 3
  37. 37
    YS Appelhans, J Thomsen, S Opitz, C Pansch, F Melzner, M Wahl, Juvenile sea stars exposed to acidification decrease feeding and growth with no acclimation potential, Marine Ecology Progress Series, 2014, 509, 227

    CrossRef

  38. 38
    N. Bednar ek, R. A. Feely, J. C. P. Reum, B. Peterson, J. Menkel, S. R. Alin, B. Hales, Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California Current Ecosystem, Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 1785, 20140123

    CrossRef

  39. 39
    Sindre A. Pedersen, Ole Jacob Håkedal, Iurgi Salaberria, Alice Tagliati, Liv Marie Gustavson, Bjørn Munro Jenssen, Anders J. Olsen, Dag Altin, Multigenerational Exposure to Ocean Acidification during Food Limitation Reveals Consequences for Copepod Scope for Growth and Vital Rates, Environmental Science & Technology, 2014, 48, 20, 12275

    CrossRef

  40. 40
    S. C. Fitzer, W. Zhu, K. E. Tanner, V. R. Phoenix, N. A. Kamenos, M. Cusack, Ocean acidification alters the material properties of Mytilus edulis shells, Journal of The Royal Society Interface, 2014, 12, 103, 20141227

    CrossRef

  41. 41
    Maria E. Asplund, Susanne P. Baden, Sarah Russ, Robert P. Ellis, Ningping Gong, Bodil E. Hernroth, Ocean acidification and host–pathogen interactions: blue mussels, Mytilus edulis, encountering Vibrio tubiashii, Environmental Microbiology, 2014, 16, 4
  42. 42
    Susan C. Fitzer, Vernon R. Phoenix, Maggie Cusack, Nicholas A. Kamenos, Ocean acidification impacts mussel control on biomineralisation, Scientific Reports, 2014, 4, 6218

    CrossRef

  43. 43
    Anna L. Campbell, Stephanie Mangan, Robert P. Ellis, Ceri Lewis, Ocean Acidification Increases Copper Toxicity to the Early Life History Stages of the PolychaeteArenicola marinain Artificial Seawater, Environmental Science & Technology, 2014, 48, 16, 9745

    CrossRef

  44. 44
    Susan C. Fitzer, Maggie Cusack, Vernon R. Phoenix, Nicholas A. Kamenos, Ocean acidification reduces the crystallographic control in juvenile mussel shells, Journal of Structural Biology, 2014, 188, 1, 39

    CrossRef

  45. 45
    N. Carey, J. D. Sigwart, Size matters: plasticity in metabolic scaling shows body-size may modulate responses to climate change, Biology Letters, 2014, 10, 8, 20140408

    CrossRef

  46. 46
    Narimane Dorey, Pauline Lançon, Mike Thorndyke, Sam Dupont, Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH, Global Change Biology, 2013, 19, 11
  47. 47
    Magdalena Jakubowska, Mateusz Jerzak, Monika Normant, Dorota Burska, Jerzy Drzazgowski, Effect of Carbon Dioxide-Induced Water Acidification on the Physiological Processes of the Baltic IsopodSaduria entomon, Journal of Shellfish Research, 2013, 32, 3, 825

    CrossRef

  48. 48
    Kristy J. Kroeker, Rebecca L. Kordas, Ryan Crim, Iris E. Hendriks, Laura Ramajo, Gerald S. Singh, Carlos M. Duarte, Jean-Pierre Gattuso, Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming, Global Change Biology, 2013, 19, 6
  49. 49
    Annaliese Hettinger, Eric Sanford, Tessa M. Hill, Elizabeth A. Lenz, Ann D. Russell, Brian Gaylord, Larval carry-over effects from ocean acidification persist in the natural environment, Global Change Biology, 2013, 19, 11
  50. 50
    C. Pansch, P. Schlegel, J. Havenhand, Larval development of the barnacle Amphibalanus improvisus responds variably but robustly to near-future ocean acidification, ICES Journal of Marine Science, 2013, 70, 4, 805

    CrossRef

  51. 51
    J. A. Godbold, M. Solan, Long-term effects of warming and ocean acidification are modified by seasonal variation in species responses and environmental conditions, Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 1627, 20130186

    CrossRef

  52. 52
    Wiebke C. Holtmann, Meike Stumpp, Magdalena A. Gutowska, Stephanie Syré, Nina Himmerkus, Frank Melzner, Markus Bleich, Maintenance of coelomic fluid pH in sea urchins exposed to elevated CO2: the role of body cavity epithelia and stereom dissolution, Marine Biology, 2013, 160, 10, 2631

    CrossRef

  53. 53
    Laura Parker, Pauline Ross, Wayne O'Connor, Hans Pörtner, Elliot Scanes, John Wright, Predicting the Response of Molluscs to the Impact of Ocean Acidification, Biology, 2013, 2, 2, 651

    CrossRef

  54. 54
    C. N. Lewis, K. A. Brown, L. A. Edwards, G. Cooper, H. S. Findlay, Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice, Proceedings of the National Academy of Sciences, 2013, 110, 51, E4960

    CrossRef

  55. 55
    Raphaël Billé, Ryan Kelly, Arne Biastoch, Ellycia Harrould-Kolieb, Dorothée Herr, Fortunat Joos, Kristy Kroeker, Dan Laffoley, Andreas Oschlies, Jean-Pierre Gattuso, Taking Action Against Ocean Acidification: A Review of Management and Policy Options, Environmental Management, 2013, 52, 4, 761

    CrossRef

  56. 56
    M. Byrne, M. Lamare, D. Winter, S. A. Dworjanyn, S. Uthicke, The stunting effect of a high CO2 ocean on calcification and development in sea urchin larvae, a synthesis from the tropics to the poles, Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 1627, 20120439

    CrossRef