• Bergmann's rule;
  • community interactions;
  • food-web structure;
  • life history;
  • metabolic theory of ecology;
  • niche theory;
  • predator–prey size ratio;
  • size distributions;
  • temperature-size rule;
  • thermal reaction norms


The unprecedented rate of global warming requires a better understanding of how ecosystems will respond. Organisms often have smaller body sizes under warmer climates (Bergmann's rule and the temperature-size rule), and body size is a major determinant of life histories, demography, population size, nutrient turnover rate, and food-web structure. Therefore, by altering body sizes in whole communities, current warming can potentially disrupt ecosystem function and services. However, the underlying drivers of warming-induced body downsizing remain far from clear. Here, we show that thermal clines in body size are predicted from universal laws of ecology and metabolism, so that size-dependent selection from competition (both intra and interspecific) and predation favors smaller individuals under warmer conditions. We validate this prediction using 4.1 × 106 individual body size measurements from French river fish spanning 29 years and 52 species. Our results suggest that warming-induced body downsizing is an emergent property of size-structured food webs, and highlight the need to consider trophic interactions when predicting biosphere reorganizations under global warming.