SEARCH

SEARCH BY CITATION

Keywords:

  • biomass;
  • diazotrophic endophytes;
  • N-fixation;
  • poplar;
  • sweet corn;
  • willow;
  • Zea mays

Abstract

Plants that grow and thrive under abiotic stress often do so with the help of endophytic microorganisms. Although nitrogen-fixing (diazotrophic) endophytes colonize many wild plants, these natural relationships may be disrupted in cultivated crop species where breeding and genotype selection often occur under conditions of intensive fertilization and irrigation. Many energy crops including corn may still benefit from diazotrophic endophyte inoculations allowing for more efficient biomass production with less input of petroleum-derived fertilizer. A selection of diazotrophic endophytes isolated from willow (Salix sitchensis, Sitka willow) and poplar (Populus trichocarpa, black cottonwood) growing in nutrient-poor river sides were used as inoculum in three experiments testing the effect on plant growth and leaf level physiology of a sweet corn variety under various levels of applied nitrogen fertilizer. We report substantial growth promotion with improved leaf physiology of corn plants in response to diazotrophic endophyte inoculations. Significant gains of early biomass with a greater root : shoot ratio were found for plants receiving endophytic inocula over the uninoculated control groups regardless of the nitrogen level. Furthermore, inoculated plants exhibited consistently higher rates of net CO2 assimilation than did those without endophytic inoculation. These results have beneficial implications for enhanced plant growth in a low-input system on nutrient-poor sites. The immediate increase of root mass observed in endophyte inoculated plants has the potential to provide better establishment and early growth in resource-limited environments. The initial results of this study also indicate that the beneficial effect from endophytes isolated from poplar and willow species is not restricted to the species from which they were initially isolated.