SEARCH

SEARCH BY CITATION

References

  • Ahlgren S, Hansson PA, Kimming M, Aronsson P, Lundkvist H (2011) Greenhouse gas emissions from cultivation of agricultural crops for biofuels and production of biogas from manure – implementation of the directive of the European parliament and of the council on the promotion of the use of energy from renewable sources. Report, Swedish Agricultural University, Uppsala.
  • Andrén O, Kätterer T (1997) ICBM: the introductory carbon balance model for exploration of soil carbon balances. Ecological Applications, 7, 12261236.
  • Andrén O, Kätterer T, Karlsson T (2004) ICBM regional model for estimations of dynamics of agricultural soil carbon pools. Nutrient Cycling in Agroecosystems, 70, 231239.
  • Aronsson P, Rosenqvist H (2011) Gödslingsrekommendationer för salix 2011. Report, Swedish University of Agricultural Sciences, Uppsala.
  • Börjesson P (2006) Livscykelanalys av salixproduktion. IMES/EESS Report 60, Department of Environmental and Energy Systems Studies, Lund University.
  • Boucher O, Reddy M (2008) Climate trade-off between black carbon and carbon dioxide emissions. Energy Policy, 36, 193200.
  • Boucher O, Friedlingstein P, Collins B, Shine K (2009) The indirect global warming potential and global temperature change potential due to methane oxidation. Environmental Research Letters, 4, 044007.
  • Brandão M, Levasseur A, Kirschbaum M et al. (2013) Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting. The International Journal of Life Cycle Assessment, 18, 230240.
  • Cherubini F, Strømman A (2011) Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresource Technology, 102, 437451.
  • Cherubini F, Bird N, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S (2009) Energy- and greenhouse gas-based lca of biofuel and bioenergy systems: key issues, ranges and recommendations. Resources, Conservation and Recycling, 53, 434447.
  • Cherubini F, Peters GP, Berntsen T, Strømman AH, Hertwich E (2011) CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming. GCB Bioenergy, 3, 413426.
  • Cherubini F, Guest G, Strømman AH (2012) Application of probability distributions to the modeling of biogenic CO2 fluxes in life cycle assessment. GCB Bioenergy, 4, 784798.
  • Djomo SN, Kasmioui OE, Ceulemans R (2011) Energy and greenhouse gas balance of bioenergy production from poplar and willow: a review. GCB Bioenergy, 3, 181197.
  • Elinder M, Almquist A, Jirjis R (1995) Cold air ventilated storage of salix chips. Report 18, Swedish University of Agricultural Sciences, Uppsala.
  • EU (2008) The 2°C target. Information reference document. Prepared and adopted by EU Climate Change Expert Group ‘EG Science’ Final Version, Version 9.1, 9th July 2008.
  • Fearnside P (2002) Why a 100-year time horizon should be used for global warming mitigation calculations. Mitigation and Adaptation Strategies for Global Change, 7, 1930.
  • Fearnside P, Lashof D, Moura-Costa P (2000) Accounting for time in mitigating global warming through land-use change and forestry. Mitigation and Adaptation Strategies for Global Change, 5, 239270.
  • Forster P, Ramaswamy V, Artaxo P et al. (2007) Changes in atmospheric constituents and in radiative forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon S, Qin D, Manning M, Chen M, Marquis M, Averyt KB, Tignor M, Miller HL). Cambridge University Press, Cambridge, UK and New York, NY.
  • Fuglestvedt J, Berntsen T, Godal O, Sausen R, Shine K, Skodvin T (2003) Metrics of climate change: assessing radiative forcing and emission indices. Climatic Change, 58, 267331.
  • Fuglestvedt J, Shine K, Berntsen T et al. (2010) Transport impacts on atmosphere and climate: metrics. Atmospheric Environment, 44, 46484677.
  • Grogan P, Matthews R (2002) A modelling analysis of the potential for soil carbon sequestration under short rotation coppice willow bioenergy plantations. Soil Use and Management, 18, 175183.
  • Gustafsson J, Larsson S, Nordh NE (2006) Manual för Salixodlare. Lantmännen Agroenergi AB, Örebro.
  • Hansen J, Sato M, Kharecha P, von Schuckmann K (2011) Earth's energy imbalance and implications. Atmospheric Chemistry and Physics Discussions, 11, 2703127105.
  • Hillier J, Whittaker C, Dailey G et al. (2009) Greenhouse gas emissions from four bioenergy crops in england and wales: Integrating spatial estimates of yield and soil carbon balance in life cycle analyses. GCB Bioenergy, 1, 267281.
  • Hooss G, Voss R, Hasselmann K, Maier-Reimer E, Joos F (2001) A nonlinear impulse response model of the coupled carbon cycle-climate system (NICCS). Climate Dynamics, 18, 189202.
  • IPCC (1991) Climate Change – The IPCC Scientific Assessment. Cambridge University Press, Cambridge, UK, New York, NY, and Melbourne, Australia, Cambridge [u.a.], repr. edition.
  • IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories. Prepared by the National Greenhouse Gas Inventories Programme (eds Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K). IGES, Hayama, Japan.
  • IPCC (2007) Climate change 2007. In: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE). Cambridge University Press, Cambridge, UK. 976 p.
  • ISO 14040:2006 (2006) Environmental Management – Life Cycle Assessment – Principles and Framework (ISO 14040:2006), 1st edn. European Committee for Standardization, Brussels.
  • Johnson JF, Allmaras R, Reicosky D (2006) Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database. Agronomy Journal, 98, 622636.
  • Joos F, Colin Prentice I, Sitch S et al. (2001) Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Global Biogeochemical Cycles, 15, 891907.
  • Kätterer T, Bolinder M, Andrén O, Kirchmann H, Menichetti L (2011) Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agriculture, Ecosystems and Environment, 141, 184192.
  • Kendall A (2012) Time-adjusted global warming potentials for lca and carbon footprints. The International Journal of Life Cycle Assessment, 17, 10421049.
  • Kimming M, Sundberg C, Nordberg Å, Baky A, Bernesson S, Norén O, Hansson PA (2011) Biomass from agriculture in small-scale combined heat and power plants – a comparative life cycle assessment. Biomass and Bioenergy, 35, 15721581.
  • Kirchmann H, Persson J, Carlgren K (1994) The ultuna long-term soil organic matter experiment, 1956–1991. Technical Report 17, Swedish University of Agricultural Sciences, Uppsala.
  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma, 123, 122.
  • Levasseur A, Lesage P, Margni M, Deschĕnes L, Samson R (2010) Considering time in lca: dynamic lca and its application to global warming impact assessments. Environmental Science and Technology, 44, 31693174.
  • Levasseur A, Lesage P, Margni M, Brandão M, Samson R (2012) Assessing temporary carbon sequestration and storage projects through land use, land-use change and forestry: comparison of dynamic life cycle assessment with ton-year approaches. Climatic Change, doi:10.1111/j.1530-9290.2012.00503.x.
  • Manne A, Richels R (2001) An alternative approach to establishing trade-offs among greenhouse gases. Nature, 410, 675677.
  • Maxima (2011) Maxima, a Computer Algebra System, version 5.21.1. Available at: http://maxima.sourceforge.net/ (accessed 20 December 2011).
  • Mola-Yudego B, González-Olabarria JR (2010) Mapping the expansion and distribution of willow plantations for bioenergy in Sweden: lessons to be learned about the spread of energy crops. Biomass and Bioenergy, 34, 442448.
  • Moura Costa P, Wilson C (2000) An equivalence factor between CO2 avoided emissions and sequestration – description and application in forestry. Mitigation and Adaptation Strategies for Global Change, 5, 5160.
  • Nilsson D, Bernesson S (2008) Pelletering och brikettering av jordbruksråvaror. Technical Report 001, Sveriges lantbruksuniversitet, Institutionen för energi och teknik, Uppsala.
  • Njakou Djomo S, Ceulemans R (2012) A comparative analysis of the carbon intensity of biofuels caused by land use changes. GCB Bioenergy, 4, 392407.
  • O'Hare M, Plevin RJ, Martin JI, Jones AD, Kendall A, Hopson E (2009) Proper accounting for time increases crop-based biofuels' greenhouse gas deficit versus petroleum. Environmental Research Letters, 4, 024001.
  • Paustian K, Cole CV, Sauerbeck D, Sampson N (1998) CO2 mitigation by agriculture: an overview. Climatic Change, 40, 135162.
  • Peters GP, Aamaas B, Lund MT, Solli C, Fuglestvedt JS (2011a) Alternative “global warming” metrics in life cycle assessment: a case study with existing transportation data. Environmental Science and Technology, 45, 86338641.
  • Peters GP, Aamaas B, Berntsen T, Fuglestvedt JS (2011b) The integrated global temperature change potential (iGTP) and relationships between emission metrics. Environmental Research Letters, 6, 044021.
  • Prentice I, Farquhar G, Fasham M et al. (2001) The carbon cycle and atmospheric carbon dioxide. In: Climate Change 2001: The Scientific Basis, Chapter 3, 881 pp. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA). Cambridge University Press, Cambridge, UK and New York, NY. 881 p.
  • Ramaswamy V, Boucher O, Haigh J et al. (2001) Radiative forcing of climate change. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA). Cambridge University Press, Cambridge, UK and New York, NY. 881 p.
  • Rytter RM (2001) Biomass production and allocation, including fine-root turnover, and annual N uptake in lysimeter-grown basket willows. Forest Ecology and Management, 140, 177192.
  • Rytter RM, Rytter L (1998) Growth, decay, and turnover rates of fine roots of basket willows. Canadian Journal of Forest Research, 28, 893902.
  • Shine K, Berntsen T, Fuglestvedt J, Skeie R, Stuber N (2007) Comparing the climate effect of emissions of short- and long-lived climate agents. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365, 19031914.
  • SJV (2008) Kartläggning av mark som tagits ur produktion. Report 08:7, Swedish Board of Agriculture, Jönköping.
  • SJV (2009) Agriculture, bioenergy and the environment. Report 09:22, Swedish Board of Agriculture, Jönköping.
  • Šlapokas T, Granhall U (1991a) Decomposition of litter in fertilized short-rotation forests on a low-humified peat bog. Forest Ecology and Management, 41, 143165.
  • Šlapokas T, Granhall U (1991b) Decomposition of willow-leaf litter in a short-rotation forest in relation to fungal colonization and palatability for earthworms. Biology and Fertility of Soils, 10, 241248.
  • Swedish Energy Agency(2011a) Energy in Sweden – facts and figures 2011. Report, Swedish Energy Agency, Eskilstuna.
  • Swedish Energy Agency (2011b) Energy in Sweden 2011. Report 43, Swedish Energy Agency, Eskilstuna.
  • Tanaka K, Peters G, Fuglestvedt J (2010) Multicomponent climate policy – why do emission metrics matter? Carbon Management, 1, 191197.
  • Uppenberg S, Almemark M, Brandel M et al. (2001) Miljöfaktabok för bränslen. del 2. bakgrundsinformation och teknisk bilaga. report IVL rapport B 1334B-2, IVL Svenska Miljöinstitutet, Stockholm.
  • Verwijst T, Nordh NE, Lundkvist A (2010) Effects of cutting characteristics on sprouting and early growth of willow. Technical Report 1144, VÄRMEFORSK Service AB, Stockholm.
  • Weih M, Nordh NE (2005) Determinants of biomass production in hybrid willows and prediction of field performance from pot studies. Tree Physiology, 25, 11971206.